About: Plagiarism Detection Based on Singular Value Decomposition     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Plagiarism is widely spread problem that is the main focus of interest these days. In this paper, we propose a new method solving associations of phrases contained in text documents. This method, called SVDPPlag, employs Singular Value Decomposition for this purpose. Further, we discuss other approaches to plagiarism detection and compare them with our method. To examine the efficiency of plagiarism detection methods, we used an experimental corpus of 950 text documents about politics, which were created from the standard CTK corpus. The experiments indicate that our approach significantly improves the accuracy of plagiarism detection and overcomes other methods.
  • Plagiarism is widely spread problem that is the main focus of interest these days. In this paper, we propose a new method solving associations of phrases contained in text documents. This method, called SVDPPlag, employs Singular Value Decomposition for this purpose. Further, we discuss other approaches to plagiarism detection and compare them with our method. To examine the efficiency of plagiarism detection methods, we used an experimental corpus of 950 text documents about politics, which were created from the standard CTK corpus. The experiments indicate that our approach significantly improves the accuracy of plagiarism detection and overcomes other methods. (en)
Title
  • Plagiarism Detection Based on Singular Value Decomposition
  • Plagiarism Detection Based on Singular Value Decomposition (en)
skos:prefLabel
  • Plagiarism Detection Based on Singular Value Decomposition
  • Plagiarism Detection Based on Singular Value Decomposition (en)
skos:notation
  • RIV/49777513:23520/08:00502249!RIV10-MSM-23520___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(2C06009)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 386721
http://linked.open...ai/riv/idVysledku
  • RIV/49777513:23520/08:00502249
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • plagiarism; copy detection; nature language processing; phrases; N-grams; singular value decomposition; latent semantic analysis (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [5D9BA8DEE5A5]
http://linked.open...i/riv/mistoVydani
  • Berlin
http://linked.open...i/riv/nazevZdroje
  • Advances in Natural Language Processing, Proceedings
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Češka, Zdeněk
http://linked.open...ain/vavai/riv/wos
  • 000258935200011
number of pages
http://purl.org/ne...btex#hasPublisher
  • Springer-Verlag
https://schema.org/isbn
  • 978-3-540-85286-5
http://localhost/t...ganizacniJednotka
  • 23520
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 97 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software