About: Irregular recurrence in compact metric spaces     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • For a continuous map f : X -> X of a compact metric space, the set IR(f) of irregularly recurrent points is the set of points which are upper density recurrent, but not lower density recurrent. These notions are related to the structure of the measure center, but many problems still remain open. We solve some of them. The main result, based on examples by Obadalova and Smital [Obadalova L, Smltal J. Counterexamples to the open problem by Zhou and Feng on minimal center of attraction. Nonlinearity 2012;25:1443-9], shows that positive topological entropy supported by the center C-z of attraction of a point z is not related to the property that C-z is the support of an invariant measure generated by z. We also show that IR(f) is invariant with respect to standard operations, like f(IR(f)) = IR(f), or IR(f(m)) = IR(f) for m is an element of N.
  • For a continuous map f : X -> X of a compact metric space, the set IR(f) of irregularly recurrent points is the set of points which are upper density recurrent, but not lower density recurrent. These notions are related to the structure of the measure center, but many problems still remain open. We solve some of them. The main result, based on examples by Obadalova and Smital [Obadalova L, Smltal J. Counterexamples to the open problem by Zhou and Feng on minimal center of attraction. Nonlinearity 2012;25:1443-9], shows that positive topological entropy supported by the center C-z of attraction of a point z is not related to the property that C-z is the support of an invariant measure generated by z. We also show that IR(f) is invariant with respect to standard operations, like f(IR(f)) = IR(f), or IR(f(m)) = IR(f) for m is an element of N. (en)
Title
  • Irregular recurrence in compact metric spaces
  • Irregular recurrence in compact metric spaces (en)
skos:prefLabel
  • Irregular recurrence in compact metric spaces
  • Irregular recurrence in compact metric spaces (en)
skos:notation
  • RIV/47813059:19610/13:#0000396!RIV14-MSM-19610___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I
http://linked.open...iv/cisloPeriodika
  • September 2013
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 81239
http://linked.open...ai/riv/idVysledku
  • RIV/47813059:19610/13:#0000396
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • recurrence; topological entropy; invariant measures; Banach density (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [872EFA7DE967]
http://linked.open...i/riv/nazevZdroje
  • Chaos, Solitons & Fractals
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 54
http://linked.open...iv/tvurceVysledku
  • Obadalová, Lenka
http://linked.open...ain/vavai/riv/wos
  • 000324442600013
issn
  • 0960-0779
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.chaos.2013.06.010
http://localhost/t...ganizacniJednotka
  • 19610
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 110 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software