About: Bedřichov Tunnel - Continual Automated Measurement Of Physical Quantities     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • In this work, a dual porosity model of reactive solute transport in porous media is presented. This model consists of a nonlinear-degenerate advection-diffusion equation including equilibrium adsorption to the reaction combined with a first-order equation for the non-equilibrium adsorption interaction processes. The numerical scheme for solving this model involves a combined high order finite volume and finite element scheme for approximation of the advection-diffusion part and relaxation-regularized algorithm for nonlinearity-degeneracy. The combined finite volume-finite element scheme is based on a new formulation developed by Eymard et al. (2010) [10]. This formulation treats the advection and diffusion separately. The advection is approximated by a second-order local maximum principle preserving cell-vertex finite volume scheme that has been recently proposed whereas the diffusion is approximated by a finite element method. The result is a conservative, accurate and very flexible algorithm which allows the use of different mesh types such as unstructured meshes and is able to solve difficult problems. Robustness and accuracy of the method have been evaluated, particularly error analysis and the rate of convergence, by comparing the analytical and numerical solutions for first and second order upwind approaches. We also illustrate the performance of the discretization scheme through a variety of practical numerical examples. The discrete maximum principle has been proved.
  • In this work, a dual porosity model of reactive solute transport in porous media is presented. This model consists of a nonlinear-degenerate advection-diffusion equation including equilibrium adsorption to the reaction combined with a first-order equation for the non-equilibrium adsorption interaction processes. The numerical scheme for solving this model involves a combined high order finite volume and finite element scheme for approximation of the advection-diffusion part and relaxation-regularized algorithm for nonlinearity-degeneracy. The combined finite volume-finite element scheme is based on a new formulation developed by Eymard et al. (2010) [10]. This formulation treats the advection and diffusion separately. The advection is approximated by a second-order local maximum principle preserving cell-vertex finite volume scheme that has been recently proposed whereas the diffusion is approximated by a finite element method. The result is a conservative, accurate and very flexible algorithm which allows the use of different mesh types such as unstructured meshes and is able to solve difficult problems. Robustness and accuracy of the method have been evaluated, particularly error analysis and the rate of convergence, by comparing the analytical and numerical solutions for first and second order upwind approaches. We also illustrate the performance of the discretization scheme through a variety of practical numerical examples. The discrete maximum principle has been proved. (en)
Title
  • Bedřichov Tunnel - Continual Automated Measurement Of Physical Quantities
  • Bedřichov Tunnel - Continual Automated Measurement Of Physical Quantities (en)
skos:prefLabel
  • Bedřichov Tunnel - Continual Automated Measurement Of Physical Quantities
  • Bedřichov Tunnel - Continual Automated Measurement Of Physical Quantities (en)
skos:notation
  • RIV/46747885:24220/11:#0001845!RIV12-MSM-24220___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1M0554)
http://linked.open...iv/cisloPeriodika
  • XVIII. 2
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 187936
http://linked.open...ai/riv/idVysledku
  • RIV/46747885:24220/11:#0001845
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Remote Continual Automated Measurement; telemetry; database; deep geological repository; wireless communication (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • CZ - Česká republika
http://linked.open...ontrolniKodProRIV
  • [5049EDD2D615]
http://linked.open...i/riv/nazevZdroje
  • Exploration Geophysics, Remote Sensing and Environment
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Hernych, Miloš
  • Hokr, Milan
  • Svoboda, Přemysl
  • Tyl, Pavel
  • Řimnáč, Martin
  • Špánek, Roman
  • Štuller, Julius
issn
  • 1803-1447
number of pages
http://localhost/t...ganizacniJednotka
  • 24220
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.116 as of Feb 22 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3239 as of Feb 22 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 82 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software