About: Activation of poly(ethylene terephthalate) surfaces by atmospheric pressure plasma     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • We report a study on effects of atmospheric pressure plasma treatment of poly(ethylene terephthalate) PET surfaces. The atmospheric pressure plasma was generated using Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air. The changes in wettability of PET surfaces were studied by water contact angle measurement. The surface energy was calculated using van Oss-Chaudhury-Good model from contact angles of water, ethylene and diiodomethane. The changes in surface chemistry after the plasma treatment were studied by X-ray photoelectron spectroscopy (XPS). We also observed changes in surface roughness investigated by Atomic force microscopy (AFM). We found that DCSBD plasma treatment for 1 s led to decrease of water contact angle from 78.4° to 40.1°. The surface energy analysis showed that water contact angle decrease is related to increase of polar part of surface energy. XPS measurement confirmed that the plasma treatment led to increase of polar groups on PET surface which explained the changes in surface energy. AFM investigation showed that plasma treatment led to an increase of surface roughness, which could be a benefit for further processing of PET, because higher roughness increases surface area, which can result into higher adhesion between PET and coatings.
  • We report a study on effects of atmospheric pressure plasma treatment of poly(ethylene terephthalate) PET surfaces. The atmospheric pressure plasma was generated using Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air. The changes in wettability of PET surfaces were studied by water contact angle measurement. The surface energy was calculated using van Oss-Chaudhury-Good model from contact angles of water, ethylene and diiodomethane. The changes in surface chemistry after the plasma treatment were studied by X-ray photoelectron spectroscopy (XPS). We also observed changes in surface roughness investigated by Atomic force microscopy (AFM). We found that DCSBD plasma treatment for 1 s led to decrease of water contact angle from 78.4° to 40.1°. The surface energy analysis showed that water contact angle decrease is related to increase of polar part of surface energy. XPS measurement confirmed that the plasma treatment led to increase of polar groups on PET surface which explained the changes in surface energy. AFM investigation showed that plasma treatment led to an increase of surface roughness, which could be a benefit for further processing of PET, because higher roughness increases surface area, which can result into higher adhesion between PET and coatings. (en)
Title
  • Activation of poly(ethylene terephthalate) surfaces by atmospheric pressure plasma
  • Activation of poly(ethylene terephthalate) surfaces by atmospheric pressure plasma (en)
skos:prefLabel
  • Activation of poly(ethylene terephthalate) surfaces by atmospheric pressure plasma
  • Activation of poly(ethylene terephthalate) surfaces by atmospheric pressure plasma (en)
skos:notation
  • RIV/44555601:13440/12:43884041!RIV13-MSM-13440___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(ED2.1.00/03.0086)
http://linked.open...iv/cisloPeriodika
  • 11
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 120947
http://linked.open...ai/riv/idVysledku
  • RIV/44555601:13440/12:43884041
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • XPS; Water contact angle; Polymer surface; Poly(ethylene terephthalate) PET; Diffuse plasma; Atmospheric plasma treatment (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [E06C6FBBBD8A]
http://linked.open...i/riv/nazevZdroje
  • Polymer degradation and stability
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 97
http://linked.open...iv/tvurceVysledku
  • Kormunda, Martin
  • Matoušek, Jindřich
  • Hergelová, B.
  • Homola, T.
  • Wu, L.Y.L.
  • Černák, M.
http://linked.open...ain/vavai/riv/wos
  • 000310655000020
issn
  • 0141-3910
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.polymdegradstab.2012.08.001
http://localhost/t...ganizacniJednotka
  • 13440
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software