About: Multiobjective Selection of Input Sensors for SVR Applied to Road Traffic Prediction     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Modern traffic sensors can measure various road traffic variables such as the traffic flow and average speed. However, some measurements can lead to incorrect data which cannot further be used in subsequent processing tasks such as traffic prediction or intelligent control. In this paper, we propose a method selecting a subset of input sensors for a support vector regression (SVR) model which is used for traffic prediction. The method is based on a multimodal and multiobjective NSGA-II algorithm. The multiobjective approach allowed us to find a good trade off between the prediction error and the number of sensors in real-world situations when many traffic data measurements are unavailable.
  • Modern traffic sensors can measure various road traffic variables such as the traffic flow and average speed. However, some measurements can lead to incorrect data which cannot further be used in subsequent processing tasks such as traffic prediction or intelligent control. In this paper, we propose a method selecting a subset of input sensors for a support vector regression (SVR) model which is used for traffic prediction. The method is based on a multimodal and multiobjective NSGA-II algorithm. The multiobjective approach allowed us to find a good trade off between the prediction error and the number of sensors in real-world situations when many traffic data measurements are unavailable. (en)
Title
  • Multiobjective Selection of Input Sensors for SVR Applied to Road Traffic Prediction
  • Multiobjective Selection of Input Sensors for SVR Applied to Road Traffic Prediction (en)
skos:prefLabel
  • Multiobjective Selection of Input Sensors for SVR Applied to Road Traffic Prediction
  • Multiobjective Selection of Input Sensors for SVR Applied to Road Traffic Prediction (en)
skos:notation
  • RIV/00216305:26230/14:PU111964!RIV15-MSM-26230___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED1.1.00/02.0070), P(TA02030915), S
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 31064
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26230/14:PU111964
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • road traffic forecasting, multiobjective feature selection, multiobjective genetic algorithms (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [49D5F416F897]
http://linked.open...v/mistoKonaniAkce
  • Ljubljana Exhibition and Convention Centre
http://linked.open...i/riv/mistoVydani
  • Heidelberg
http://linked.open...i/riv/nazevZdroje
  • Parallel Problem Solving from Nature - PPSN XIII
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Fučík, Otto
  • Sekanina, Lukáš
  • Petrlík, Jiří
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://bibframe.org/vocab/doi
  • 10.1007/978-3-319-10762-2_79
http://purl.org/ne...btex#hasPublisher
  • Springer-Verlag
https://schema.org/isbn
  • 978-3-319-10761-5
http://localhost/t...ganizacniJednotka
  • 26230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 85 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software