About: Optimization of Machine Learning Parameters for Spectrum Survey Analysis     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • This paper shows preliminary results of the optimization of machine learning parameters for cognitive radio application by brutal force calculations. We were analyzing frequency occupancy data of the huge measurement campaign of the spectrum background. For these date there are two possible states. Firstly, limited frequency band is occupied (detected signal level is above the threshold) by the other frequency signal | there will be an interference for our system for this frequency band. Secondly, the frequency band is free of any other wireless radiation. These true/false data are analyzed in a context of the cognitive radio by the reinforcement learning and simple learning. Each channel received a score from the learning algorithm given by weighting function. The quality of the output scores is discussed in this paper according to the learning algorithm parameters and optional learning time.
  • This paper shows preliminary results of the optimization of machine learning parameters for cognitive radio application by brutal force calculations. We were analyzing frequency occupancy data of the huge measurement campaign of the spectrum background. For these date there are two possible states. Firstly, limited frequency band is occupied (detected signal level is above the threshold) by the other frequency signal | there will be an interference for our system for this frequency band. Secondly, the frequency band is free of any other wireless radiation. These true/false data are analyzed in a context of the cognitive radio by the reinforcement learning and simple learning. Each channel received a score from the learning algorithm given by weighting function. The quality of the output scores is discussed in this paper according to the learning algorithm parameters and optional learning time. (en)
Title
  • Optimization of Machine Learning Parameters for Spectrum Survey Analysis
  • Optimization of Machine Learning Parameters for Spectrum Survey Analysis (en)
skos:prefLabel
  • Optimization of Machine Learning Parameters for Spectrum Survey Analysis
  • Optimization of Machine Learning Parameters for Spectrum Survey Analysis (en)
skos:notation
  • RIV/00216305:26220/14:PU110396!RIV15-MSM-26220___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED2.1.00/03.0072)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 34963
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26220/14:PU110396
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • machine learning, cognitive radio, spectrum analysis (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [29CDFE7750DA]
http://linked.open...v/mistoKonaniAkce
  • Guangzhou
http://linked.open...i/riv/mistoVydani
  • Neuveden
http://linked.open...i/riv/nazevZdroje
  • Proceedings of PIERS 2014 in Guangzhou
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Steinbauer, Miloslav
  • Urban, Robert
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • Neuveden
https://schema.org/isbn
  • 978-1-934142-28-8
http://localhost/t...ganizacniJednotka
  • 26220
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 92 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software