About: Lower and upper estimates of solutions to systems of delay dynamic equations on time scales     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • In this paper we study a system of delay dynamic equations on the time scale $\T$ of the form $$y^{\Delta}(t)=f(t,y_{\tau}(t)),$$ where $f\colon\mathbb{T}\times\mathbb{R}^n\rightarrow\mathbb{R}^n$, $y_\tau(t)=(y_1(\tau_1(t)),\ldots,y_n(\tau_n(t)))$ and $\tau_i\colon\T\rightarrow \T$, $i=1,\ldots,n$ are the delay functions. We are interested about the asymptotic behavior of solutions of mentioned system. More precisely, we formulate conditions on a function $f$, which guarantee that the graph of at least one solution of above mentioned system stays in the prescribed domain. This result generalizes some previous results concerning the asymptotic behavior of solutions of non-delay systems of dynamic equations or of delay dynamic equations. A relevant example is considered.
  • In this paper we study a system of delay dynamic equations on the time scale $\T$ of the form $$y^{\Delta}(t)=f(t,y_{\tau}(t)),$$ where $f\colon\mathbb{T}\times\mathbb{R}^n\rightarrow\mathbb{R}^n$, $y_\tau(t)=(y_1(\tau_1(t)),\ldots,y_n(\tau_n(t)))$ and $\tau_i\colon\T\rightarrow \T$, $i=1,\ldots,n$ are the delay functions. We are interested about the asymptotic behavior of solutions of mentioned system. More precisely, we formulate conditions on a function $f$, which guarantee that the graph of at least one solution of above mentioned system stays in the prescribed domain. This result generalizes some previous results concerning the asymptotic behavior of solutions of non-delay systems of dynamic equations or of delay dynamic equations. A relevant example is considered. (en)
Title
  • Lower and upper estimates of solutions to systems of delay dynamic equations on time scales
  • Lower and upper estimates of solutions to systems of delay dynamic equations on time scales (en)
skos:prefLabel
  • Lower and upper estimates of solutions to systems of delay dynamic equations on time scales
  • Lower and upper estimates of solutions to systems of delay dynamic equations on time scales (en)
skos:notation
  • RIV/00216305:26220/13:PU106700!RIV14-GA0-26220___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED1.1.00/02.0068), P(EE2.3.30.0039), P(GAP201/10/1032)
http://linked.open...iv/cisloPeriodika
  • 216
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 85498
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26220/13:PU106700
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • time scale, dynamic system, delay, asymptotic behavior of solution, retract, retraction (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • CH - Švýcarská konfederace
http://linked.open...ontrolniKodProRIV
  • [E2128716324B]
http://linked.open...i/riv/nazevZdroje
  • Boundary Value Problems
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 2013
http://linked.open...iv/tvurceVysledku
  • Diblík, Josef
  • Vítovec, Jiří
issn
  • 1687-2770
number of pages
http://localhost/t...ganizacniJednotka
  • 26220
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software