About: Marker detection based on the disparity analysis     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The image registration is defined as a searching for the best geometric transform, which describes the relationship between the reference image and the floated image. There are two approaches how to register corresponding images. The main difference is in the geometrical transform applied to the floated image. In the area of soft tissue movements (e.g. muscles) the global geometrical transform is inefficient, thus the local geometrical transform has to be applied. The registration is then based on a number of mutually shifted corresponded markers (points) determined in both of the images. In the case that there are any artifical markers in both reference and floated images, we have to determine them using some sophisticated method. In this paper, we present the results of the markers de-tection based on the Disparity analysis method.
  • The image registration is defined as a searching for the best geometric transform, which describes the relationship between the reference image and the floated image. There are two approaches how to register corresponding images. The main difference is in the geometrical transform applied to the floated image. In the area of soft tissue movements (e.g. muscles) the global geometrical transform is inefficient, thus the local geometrical transform has to be applied. The registration is then based on a number of mutually shifted corresponded markers (points) determined in both of the images. In the case that there are any artifical markers in both reference and floated images, we have to determine them using some sophisticated method. In this paper, we present the results of the markers de-tection based on the Disparity analysis method. (en)
Title
  • Marker detection based on the disparity analysis
  • Marker detection based on the disparity analysis (en)
skos:prefLabel
  • Marker detection based on the disparity analysis
  • Marker detection based on the disparity analysis (en)
skos:notation
  • RIV/00216305:26220/09:PU80402!RIV10-MSM-26220___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S, Z(MSM0021630513)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 324722
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26220/09:PU80402
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • disparity analysis, disparity map, markers, CT (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [D37A4D11B6D5]
http://linked.open...v/mistoKonaniAkce
  • FEKT VUT v Brně
http://linked.open...i/riv/mistoVydani
  • Neuveden
http://linked.open...i/riv/nazevZdroje
  • Proceedings of The 15th Conference Student EEICT 2009. Vol 4.
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Malínský, Miloš
  • Peter, Roman
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Neuveden
https://schema.org/isbn
  • 978-80-214-3870-5
http://localhost/t...ganizacniJednotka
  • 26220
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software