Attributes | Values |
---|
rdf:type
| |
Description
| - In technical practice we are very often confronted with need to approximate functions from measured values. Another frequent task is a calculation of measure of central tendency of sample data. For a good reason the method of least squares and the statistics like mean or median are being used. The goal of this paper is to show some nonstandard metrics usable in tasks of creation of approximation model or in tasks of symbolic regression. These metrics, as will be shown, can be created using so-called generating function. It is important to note these metrics can affect robustness of created model concerning extremely deviated values. Using these exotic metrics in tasks of data approximation or symbolic regression we get nonlinear unconstrained optimization task. To solve such task it is necessary to use adequate optimization strategies such as soft-computing methods (evolution algorithms, HC12, differential evolution, etc.) or classical methods of nonlinear optimization (Nelder-Mead, conjugate gradient
- In technical practice we are very often confronted with need to approximate functions from measured values. Another frequent task is a calculation of measure of central tendency of sample data. For a good reason the method of least squares and the statistics like mean or median are being used. The goal of this paper is to show some nonstandard metrics usable in tasks of creation of approximation model or in tasks of symbolic regression. These metrics, as will be shown, can be created using so-called generating function. It is important to note these metrics can affect robustness of created model concerning extremely deviated values. Using these exotic metrics in tasks of data approximation or symbolic regression we get nonlinear unconstrained optimization task. To solve such task it is necessary to use adequate optimization strategies such as soft-computing methods (evolution algorithms, HC12, differential evolution, etc.) or classical methods of nonlinear optimization (Nelder-Mead, conjugate gradient (en)
|
Title
| - Advanced Decomposition Techniques Applied to DOP
- Advanced Decomposition Techniques Applied to DOP (en)
|
skos:prefLabel
| - Advanced Decomposition Techniques Applied to DOP
- Advanced Decomposition Techniques Applied to DOP (en)
|
skos:notation
| - RIV/00216305:26210/12:PU99374!RIV15-MSM-26210___
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/00216305:26210/12:PU99374
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - metric, exotic metric, function approximation, generating function (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...v/mistoKonaniAkce
| - Brno University of Technology
|
http://linked.open...i/riv/mistoVydani
| |
http://linked.open...i/riv/nazevZdroje
| - 18th International Conference of Soft Computing, MENDEL 2012 (id 19255)
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...iv/tvurceVysledku
| - Matoušek, Radomil
- Popela, Pavel
- Roupec, Jan
- Sklenář, Jaroslav
- Mrázková, Eva
|
http://linked.open...vavai/riv/typAkce
| |
http://linked.open...ain/vavai/riv/wos
| |
http://linked.open.../riv/zahajeniAkce
| |
number of pages
| |
http://purl.org/ne...btex#hasPublisher
| - Vysoké učení technické v Brně
|
https://schema.org/isbn
| |
http://localhost/t...ganizacniJednotka
| |