About: Parallelizing the Precomputed Scan Matching Method for Graphics Card processing     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Certain methods solving mobile robot localization problem are reliable, but computationally expensive. One possible way how to increase the speed of necessary calculations is to use parallel approach and use graphics card to speed the processes up. Methods such as Precomputed Scan Matching Method (PCSM) or Particle Filters are suitable for parallel processing. PCSM method requires processing the map prior to localization and so far such processing had to be done offline, while the new approach brings computational time reduction in order of a magnitude. The paper describes the modifications of PCSM method and its implementation suitable for modern ATi Radeon and NVIDIA GeForce graphics card series.
  • Certain methods solving mobile robot localization problem are reliable, but computationally expensive. One possible way how to increase the speed of necessary calculations is to use parallel approach and use graphics card to speed the processes up. Methods such as Precomputed Scan Matching Method (PCSM) or Particle Filters are suitable for parallel processing. PCSM method requires processing the map prior to localization and so far such processing had to be done offline, while the new approach brings computational time reduction in order of a magnitude. The paper describes the modifications of PCSM method and its implementation suitable for modern ATi Radeon and NVIDIA GeForce graphics card series. (en)
Title
  • Parallelizing the Precomputed Scan Matching Method for Graphics Card processing
  • Parallelizing the Precomputed Scan Matching Method for Graphics Card processing (en)
skos:prefLabel
  • Parallelizing the Precomputed Scan Matching Method for Graphics Card processing
  • Parallelizing the Precomputed Scan Matching Method for Graphics Card processing (en)
skos:notation
  • RIV/00216305:26210/10:PU88101!RIV11-MSM-26210___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • Z(MSM0021630518)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 278064
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26210/10:PU88101
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Localization, PCSM, GPGPU, OpenCL (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [89144B54E577]
http://linked.open...v/mistoKonaniAkce
  • Bratislava
http://linked.open...i/riv/mistoVydani
  • Bratislava
http://linked.open...i/riv/nazevZdroje
  • Proceedings of the 1st intenational conference Robotics in Education, RiE2010
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Krejsa, Jiří
  • Věchet, Stanislav
  • Ondroušek, Vít
  • Schreiber, Petr
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Slovenská technická univerzita v Bratislave
https://schema.org/isbn
  • 978-80-227-3353-3
http://localhost/t...ganizacniJednotka
  • 26210
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 77 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software