Attributes | Values |
---|
rdf:type
| |
Description
| - Many footbridges have natural frequencies that coincide with the dominant frequencies of the pedestrian-induced load and therefore they have a potential to suffer excessive vibrations under dynamic loads induced by pedestrians. Some of the design standards introduce load models for pedestrian loads applicable for simple structures. Load modeling for more complex structures, on the other hand, is most often left to the designer. The main focus of this paper is on the human induced forces transmitted to a footbridge and on the ways these loads can be modeled to be used in the dynamic design of footbridges. Also design criteria and load models proposed by widely used standards were introduced and a comparison was made. The dynamic analysis of the suspension bridge in Kolin in the Czech Republic was performed on detailed FEM model using the ANSYS program system. An attempt to model the load imposed by a single person and a crowd of pedestrians resulted in displacements and accelerations that are compared
- Many footbridges have natural frequencies that coincide with the dominant frequencies of the pedestrian-induced load and therefore they have a potential to suffer excessive vibrations under dynamic loads induced by pedestrians. Some of the design standards introduce load models for pedestrian loads applicable for simple structures. Load modeling for more complex structures, on the other hand, is most often left to the designer. The main focus of this paper is on the human induced forces transmitted to a footbridge and on the ways these loads can be modeled to be used in the dynamic design of footbridges. Also design criteria and load models proposed by widely used standards were introduced and a comparison was made. The dynamic analysis of the suspension bridge in Kolin in the Czech Republic was performed on detailed FEM model using the ANSYS program system. An attempt to model the load imposed by a single person and a crowd of pedestrians resulted in displacements and accelerations that are compared (en)
|
Title
| - Footbridge response on single pedestrian induced vibration analysis
- Footbridge response on single pedestrian induced vibration analysis (en)
|
skos:prefLabel
| - Footbridge response on single pedestrian induced vibration analysis
- Footbridge response on single pedestrian induced vibration analysis (en)
|
skos:notation
| - RIV/00216305:26110/09:PU85655!RIV10-MSM-26110___
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(GA103/08/0275), P(GA103/09/1258), Z(MSM0021630519)
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/00216305:26110/09:PU85655
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Footbridge, Serviceability, Pedestrian action, Numerical analysis. (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - FR - Francouzská republika
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| - PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Hradil, Petr
- Kala, Jiří
- Salajka, Vlastislav
|
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |
http://localhost/t...ganizacniJednotka
| |
is http://linked.open...avai/riv/vysledek
of | |