About: The moving frames for differential equations II. Underdetermined and functional equations     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Continuing the idea of Part I, we deal with more involved pseudogroup of transformations $\bar x=\varphi (x),$ $\bar y=L(x)y,$ $\bar z=M(x)z,\, \ldots$ applied to the first order differential equations including the underdetermined case (e.g., the Monge equation $y'=f(x,y,z,z')$) and certain differential equations with deviation (if $z=y(\xi (x))$ is substituted). Our aim is to determine complete families of invariants resolving the equivalence problem and to clarify the largest possible symmetries. Together with Part I, this article may be regarded as an introduction into the method of moving frames adapted to the common theory of differential equations.
  • Continuing the idea of Part I, we deal with more involved pseudogroup of transformations $\bar x=\varphi (x),$ $\bar y=L(x)y,$ $\bar z=M(x)z,\, \ldots$ applied to the first order differential equations including the underdetermined case (e.g., the Monge equation $y'=f(x,y,z,z')$) and certain differential equations with deviation (if $z=y(\xi (x))$ is substituted). Our aim is to determine complete families of invariants resolving the equivalence problem and to clarify the largest possible symmetries. Together with Part I, this article may be regarded as an introduction into the method of moving frames adapted to the common theory of differential equations. (en)
Title
  • The moving frames for differential equations II. Underdetermined and functional equations
  • The moving frames for differential equations II. Underdetermined and functional equations (en)
skos:prefLabel
  • The moving frames for differential equations II. Underdetermined and functional equations
  • The moving frames for differential equations II. Underdetermined and functional equations (en)
skos:notation
  • RIV/00216305:26110/04:PU41639!RIV11-MSM-26110___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • V
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 574673
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26110/04:PU41639
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • moving frame, differential equations,underdetermined equations (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • CZ - Česká republika
http://linked.open...ontrolniKodProRIV
  • [6FFF045F794A]
http://linked.open...i/riv/nazevZdroje
  • ARCHIVUM MATHEMATICUM
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 40
http://linked.open...iv/tvurceVysledku
  • Dlouhý, Oldřich
  • Tryhuk, Václav
issn
  • 0044-8753
number of pages
http://localhost/t...ganizacniJednotka
  • 26110
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 84 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software