About: FIBONACCI NUMBERS OF GRAPHS CORRESPONDING TO A TYPE OF HEXAGONAL CHAINS     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The concept of the Fibonacci number of an undirected graph G=(V,E), refers to the number of subsets U of V such that no two vertices in U are adjacent. In this contribution a variant of the decomposition theorem is derived. The Fibonacci numbers of graphs corresponding to one type of hexagonal chains are calculated by using the decomposition formula. Searching of the Fibonacci numbers of certain classes of graphs leads to difference equations or their systems. The Fibonacci number of hexagonal chain with linearly annelated hexagons is found as a function of the number of hexagons in the chain.
  • The concept of the Fibonacci number of an undirected graph G=(V,E), refers to the number of subsets U of V such that no two vertices in U are adjacent. In this contribution a variant of the decomposition theorem is derived. The Fibonacci numbers of graphs corresponding to one type of hexagonal chains are calculated by using the decomposition formula. Searching of the Fibonacci numbers of certain classes of graphs leads to difference equations or their systems. The Fibonacci number of hexagonal chain with linearly annelated hexagons is found as a function of the number of hexagons in the chain. (en)
Title
  • FIBONACCI NUMBERS OF GRAPHS CORRESPONDING TO A TYPE OF HEXAGONAL CHAINS
  • FIBONACCI NUMBERS OF GRAPHS CORRESPONDING TO A TYPE OF HEXAGONAL CHAINS (en)
skos:prefLabel
  • FIBONACCI NUMBERS OF GRAPHS CORRESPONDING TO A TYPE OF HEXAGONAL CHAINS
  • FIBONACCI NUMBERS OF GRAPHS CORRESPONDING TO A TYPE OF HEXAGONAL CHAINS (en)
skos:notation
  • RIV/00216275:25410/14:39897476!RIV15-MSM-25410___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 16685
http://linked.open...ai/riv/idVysledku
  • RIV/00216275:25410/14:39897476
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Fibonacci number, simple graph, recurrence, decomposition theorem, hexagonal chain, Fibonacene (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [214A827314E1]
http://linked.open...v/mistoKonaniAkce
  • Bratislava
http://linked.open...i/riv/mistoVydani
  • Bratislava
http://linked.open...i/riv/nazevZdroje
  • APLIMAT 2014: 13th Conference on Applied Mathematics: proceedings
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Seibert, Jaroslav
  • Zahrádka, Jaromír
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • Slovenská technická univerzita v Bratislave
https://schema.org/isbn
  • 978-80-227-4140-8
http://localhost/t...ganizacniJednotka
  • 25410
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 84 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software