About: Computing the stretch of an embedded graph     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Let G be a graph embedded in an orientable surface Sigma, possibly with edge weights, and denote by len(gamma) the length (the number of edges or the sum of the edge weights) of a cycle. in G. The stretch of a graph embedded on a surface is the minimum of len(alpha) . len(beta) over all pairs of cycles alpha and beta that cross exactly once. We provide two algorithms to compute the stretch of an embedded graph, each based on a different principle. The first algorithm is based on surgery and computes the stretch in time O(g(4)n log n) with high probability, or in time O(g(4)n log(2) n) in the worst case, where g is the genus of the surface S and n is the number of vertices in G. The second algorithm is based on using a short homology basis and computes the stretch in time O(n(2) log n + n(2)g + ng(3)).
  • Let G be a graph embedded in an orientable surface Sigma, possibly with edge weights, and denote by len(gamma) the length (the number of edges or the sum of the edge weights) of a cycle. in G. The stretch of a graph embedded on a surface is the minimum of len(alpha) . len(beta) over all pairs of cycles alpha and beta that cross exactly once. We provide two algorithms to compute the stretch of an embedded graph, each based on a different principle. The first algorithm is based on surgery and computes the stretch in time O(g(4)n log n) with high probability, or in time O(g(4)n log(2) n) in the worst case, where g is the genus of the surface S and n is the number of vertices in G. The second algorithm is based on using a short homology basis and computes the stretch in time O(n(2) log n + n(2)g + ng(3)). (en)
Title
  • Computing the stretch of an embedded graph
  • Computing the stretch of an embedded graph (en)
skos:prefLabel
  • Computing the stretch of an embedded graph
  • Computing the stretch of an embedded graph (en)
skos:notation
  • RIV/00216224:14330/14:00074093!RIV15-GA0-14330___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GEGIG/11/E023)
http://linked.open...iv/cisloPeriodika
  • 3
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 8518
http://linked.open...ai/riv/idVysledku
  • RIV/00216224:14330/14:00074093
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • topological graph theory; embedded graph; crossings; nonseparating cycle; homology basis (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [693206D54B20]
http://linked.open...i/riv/nazevZdroje
  • SIAM Journal on Discrete Mathematics
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 28
http://linked.open...iv/tvurceVysledku
  • Chimani, Markus
  • Hliněný, Petr
  • Cabello, Sergio
http://linked.open...ain/vavai/riv/wos
  • 000343230800019
issn
  • 0895-4801
number of pages
http://bibframe.org/vocab/doi
  • 10.1137/130945636
http://localhost/t...ganizacniJednotka
  • 14330
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 85 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software