About: Automata Approach to Graphs of Bounded Rank-width     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Rank-width is a rather new structural graph measure introduced by Oum and Seymour in 2003 in order to find an efficiently computable approximation of clique-width of a graph. Being a very nice graph measure indeed, the only serious drawback of rank-width was that it is virtually impossible to use a given rank-decomposition of a graph for running dynamic algorithms on it. We propose a new independent description of rank-decompositions of graphs using labeling parse trees which is, after all, mathematically equivalent to the recent algebraic graph-expression approach to rank-decompositions of Courcelle and Kant\'e [WG'07]. We then use our labeling parse trees to build a Myhill-Nerode-type formalism for handling restricted classes of graphs of bounded rank-width, and to directly prove that (an already indirectly known result) all graph properties expressible in MSO logic are decidable by finite automata running on the labeling parse trees.
  • Rank-width is a rather new structural graph measure introduced by Oum and Seymour in 2003 in order to find an efficiently computable approximation of clique-width of a graph. Being a very nice graph measure indeed, the only serious drawback of rank-width was that it is virtually impossible to use a given rank-decomposition of a graph for running dynamic algorithms on it. We propose a new independent description of rank-decompositions of graphs using labeling parse trees which is, after all, mathematically equivalent to the recent algebraic graph-expression approach to rank-decompositions of Courcelle and Kant\'e [WG'07]. We then use our labeling parse trees to build a Myhill-Nerode-type formalism for handling restricted classes of graphs of bounded rank-width, and to directly prove that (an already indirectly known result) all graph properties expressible in MSO logic are decidable by finite automata running on the labeling parse trees. (en)
Title
  • Automata Approach to Graphs of Bounded Rank-width
  • Automata Approach to Graphs of Bounded Rank-width (en)
skos:prefLabel
  • Automata Approach to Graphs of Bounded Rank-width
  • Automata Approach to Graphs of Bounded Rank-width (en)
skos:notation
  • RIV/00216224:14330/08:00025022!RIV11-GA0-14330___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1M0545), P(GA201/08/0308)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 357363
http://linked.open...ai/riv/idVysledku
  • RIV/00216224:14330/08:00025022
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • parameterized algorithm; rank-width; tree automaton; MSO logic (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [B78C6012AA9C]
http://linked.open...v/mistoKonaniAkce
  • Nagoya, Japan
http://linked.open...i/riv/mistoVydani
  • United Kingdom
http://linked.open...i/riv/nazevZdroje
  • International Workshop on Combinatorial Algorithms IWOCA 2008
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Ganian, Robert
  • Hliněný, Petr
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • Proceedings of the International Workshop on Combinatorial Algorithms 2008, College Publications
https://schema.org/isbn
  • 978-1-904987-74-1
http://localhost/t...ganizacniJednotka
  • 14330
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 85 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software