About: Detecting Annotation Errors in a Corpus by Induction of Syntactic Patterns     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • This paper brings a new method for acquisition of syntactic patterns capable of detecting errors in annotated corpora. These patterns are acquired semi-automatically, by means of an inductive logic programming (relational data mining) system followed by a human expert supervision. The patterns acquired have been used for automatic detection and subsequent manual correction of the annotation errors found in DESAM, a morphologically annotated corpus of written Czech.
  • This paper brings a new method for acquisition of syntactic patterns capable of detecting errors in annotated corpora. These patterns are acquired semi-automatically, by means of an inductive logic programming (relational data mining) system followed by a human expert supervision. The patterns acquired have been used for automatic detection and subsequent manual correction of the annotation errors found in DESAM, a morphologically annotated corpus of written Czech. (en)
  • This paper brings a new method for acquisition of syntactic patterns capable of detecting errors in annotated corpora. These patterns are acquired semi-automatically, by means of an inductive logic programming (relational data mining) system followed by a human expert supervision. The patterns acquired have been used for automatic detection and subsequent manual correction of the annotation errors found in DESAM, a morphologically annotated corpus of written Czech. (cs)
Title
  • Detecting Annotation Errors in a Corpus by Induction of Syntactic Patterns
  • Detecting Annotation Errors in a Corpus by Induction of Syntactic Patterns (en)
  • Detecting Annotation Errors in a Corpus by Induction of Syntactic Patterns (cs)
skos:prefLabel
  • Detecting Annotation Errors in a Corpus by Induction of Syntactic Patterns
  • Detecting Annotation Errors in a Corpus by Induction of Syntactic Patterns (en)
  • Detecting Annotation Errors in a Corpus by Induction of Syntactic Patterns (cs)
skos:notation
  • RIV/00216224:14330/03:00008945!RIV08-MSM-14330___
http://linked.open.../vavai/riv/strany
  • 74-81
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • Z(MSM 143300003)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 603248
http://linked.open...ai/riv/idVysledku
  • RIV/00216224:14330/03:00008945
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • error detection; morphological tagging; relational rule induction; syntactic patterns (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [E29FE2FC8D7A]
http://linked.open...v/mistoKonaniAkce
  • České Budějovice, Czech republic
http://linked.open...i/riv/mistoVydani
  • Berlin
http://linked.open...i/riv/nazevZdroje
  • Text, Speech and Dialogue: Sixth International Conference, TSD 2003
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Nepil, Miloslav
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Springer-Verlag
https://schema.org/isbn
  • 3-540-20024-X
http://localhost/t...ganizacniJednotka
  • 14330
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software