About: State complexity of operations on two-way finite automata over a unary alphabet     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The paper determines the number of states in two-way deterministic finite automata (2DFA) over a one-letter alphabet sufficient and in the worst case necessary to represent the results of basic language-theoretic operations on 2DFAs with a certain number of states. It is proved that (i) intersection of an m-state 2DFA and an n-state 2DFA requires between m+n and m+n+1 states; (ii) union of an m-state 2DFA and an n-state 2DFA, between m+n and 2m+n+4 states; (iii) Kleene star of an n-state 2DFA, (g(n)+O(n))^2 states, where g is Landau's function; (iv) k-th power of an n-state 2DFA, between (k-1)g(n)-k and k(g(n)+n) states; (v) concatenation of an m-state 2DFA and an n-state 2DFA, exp((1+O(1))sqrt((m+n)ln(m+n))) states.
  • The paper determines the number of states in two-way deterministic finite automata (2DFA) over a one-letter alphabet sufficient and in the worst case necessary to represent the results of basic language-theoretic operations on 2DFAs with a certain number of states. It is proved that (i) intersection of an m-state 2DFA and an n-state 2DFA requires between m+n and m+n+1 states; (ii) union of an m-state 2DFA and an n-state 2DFA, between m+n and 2m+n+4 states; (iii) Kleene star of an n-state 2DFA, (g(n)+O(n))^2 states, where g is Landau's function; (iv) k-th power of an n-state 2DFA, between (k-1)g(n)-k and k(g(n)+n) states; (v) concatenation of an m-state 2DFA and an n-state 2DFA, exp((1+O(1))sqrt((m+n)ln(m+n))) states. (en)
Title
  • State complexity of operations on two-way finite automata over a unary alphabet
  • State complexity of operations on two-way finite automata over a unary alphabet (en)
skos:prefLabel
  • State complexity of operations on two-way finite automata over a unary alphabet
  • State complexity of operations on two-way finite automata over a unary alphabet (en)
skos:notation
  • RIV/00216224:14310/12:00057833!RIV13-GA0-14310___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GBP202/12/G061)
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 171124
http://linked.open...ai/riv/idVysledku
  • RIV/00216224:14310/12:00057833
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Finite automata; Two-way automata; Regular languages; Unary languages; State complexity; Landau's function (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [2BA94ACCA15F]
http://linked.open...i/riv/nazevZdroje
  • Theoretical Computer Science
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 449
http://linked.open...iv/tvurceVysledku
  • Kunc, Michal
  • Okhotin, Alexander
http://linked.open...ain/vavai/riv/wos
  • 000306771300010
issn
  • 0304-3975
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.tcs.2012.04.010
http://localhost/t...ganizacniJednotka
  • 14310
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software