Attributes | Values |
---|
rdf:type
| |
Description
| - Deformation origin of calcite twin lamellae (e-twins) and their crystallographic laws have been recognized in the end of the 19th century (e.g., Mügge, 1883). During the last 60 years it has been found that twinning is an important intracrystalline deformation mechanism with low critical resolved shear stress (e.g. Turner, 1963; DeBresser, Spiers, 1996) and therefore it is the main deformation feature for low temperatures, low confining pressures and low finite strains (15%). Since the fifties of the 20th century, when Turner (1953) developed a method for determination of stress axes from a set of e-twins (TDA), it became a useful tool for paleostress analysis in deformed calcitic rocks (or rocks containing calcite veins). Several methods of differential stresses estimations (Jamison and Spang, 1976; Rowe and Rutter, 1990) and stress tensor calculations (e.g. Lacombe and Laurent, 1996) have been developed during last 60 years based on experimental and natural (?field) data.
- Deformation origin of calcite twin lamellae (e-twins) and their crystallographic laws have been recognized in the end of the 19th century (e.g., Mügge, 1883). During the last 60 years it has been found that twinning is an important intracrystalline deformation mechanism with low critical resolved shear stress (e.g. Turner, 1963; DeBresser, Spiers, 1996) and therefore it is the main deformation feature for low temperatures, low confining pressures and low finite strains (15%). Since the fifties of the 20th century, when Turner (1953) developed a method for determination of stress axes from a set of e-twins (TDA), it became a useful tool for paleostress analysis in deformed calcitic rocks (or rocks containing calcite veins). Several methods of differential stresses estimations (Jamison and Spang, 1976; Rowe and Rutter, 1990) and stress tensor calculations (e.g. Lacombe and Laurent, 1996) have been developed during last 60 years based on experimental and natural (?field) data. (en)
|
Title
| - Calcite twinning stress inversion using OIM (EBSD) data
- Calcite twinning stress inversion using OIM (EBSD) data (en)
|
skos:prefLabel
| - Calcite twinning stress inversion using OIM (EBSD) data
- Calcite twinning stress inversion using OIM (EBSD) data (en)
|
skos:notation
| - RIV/00216224:14310/05:00013764!RIV10-MSM-14310___
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/00216224:14310/05:00013764
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - calcite; twinning; stress inversion; EBSD; OIM (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| |
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Kalvoda, Jiří
- Melichar, Rostislav
- Rez, Jiří
- Mitsche, Stefan
- Poelt, Peter
|
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |
http://localhost/t...ganizacniJednotka
| |
is http://linked.open...avai/riv/vysledek
of | |