About: Mechanisms of Aggregation of Cysteine Functionalized Gold Nanoparticles     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • The interaction of gold nanoparticles (AuNPs) with cysteine and its derivatives is the basis of a number of bionanotechnologies, and for these, the most important process is aggregation (or antiaggregation), which enables an array of colorimetric detection methods. When AuNPs were functionalized with cysteine, its dimer cystine, or the cysteine-derived tripeptide, glutathione, three different mechanisms of aggregation were observed. Both cysteine and glutathione induced aggregation of AuNPs without further pH modification: the first by interparticle zwitterionic interaction and the second by interparticle hydrogen bonding. Cystine, however, did not induce aggregation, although it dissociated into two cysteinate moieties upon adsorption on the AuNPs, which appear to be chemically identical to cysteinate produced from cysteine adsorption. We show that the difference is due to the lower coverage of cysteinate from cystine and differences in charge states of the adsorbates. On modifying the pH to 1.5, the surface species become cationic (neutral COOH and protonated NH3+), and aggregation of cystine/AuNPs occurs immediately by interparticle hydrogen bonding. Thus, cysteine may induce aggregation by neutral hydrogen bonding or zwitterionic interaction between nanoparticles, but the mechanism depends sensitively on a number of parameters.
  • The interaction of gold nanoparticles (AuNPs) with cysteine and its derivatives is the basis of a number of bionanotechnologies, and for these, the most important process is aggregation (or antiaggregation), which enables an array of colorimetric detection methods. When AuNPs were functionalized with cysteine, its dimer cystine, or the cysteine-derived tripeptide, glutathione, three different mechanisms of aggregation were observed. Both cysteine and glutathione induced aggregation of AuNPs without further pH modification: the first by interparticle zwitterionic interaction and the second by interparticle hydrogen bonding. Cystine, however, did not induce aggregation, although it dissociated into two cysteinate moieties upon adsorption on the AuNPs, which appear to be chemically identical to cysteinate produced from cysteine adsorption. We show that the difference is due to the lower coverage of cysteinate from cystine and differences in charge states of the adsorbates. On modifying the pH to 1.5, the surface species become cationic (neutral COOH and protonated NH3+), and aggregation of cystine/AuNPs occurs immediately by interparticle hydrogen bonding. Thus, cysteine may induce aggregation by neutral hydrogen bonding or zwitterionic interaction between nanoparticles, but the mechanism depends sensitively on a number of parameters. (en)
Title
  • Mechanisms of Aggregation of Cysteine Functionalized Gold Nanoparticles
  • Mechanisms of Aggregation of Cysteine Functionalized Gold Nanoparticles (en)
skos:prefLabel
  • Mechanisms of Aggregation of Cysteine Functionalized Gold Nanoparticles
  • Mechanisms of Aggregation of Cysteine Functionalized Gold Nanoparticles (en)
skos:notation
  • RIV/00216208:11320/14:10288976!RIV15-MSM-11320___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(LG12003)
http://linked.open...iv/cisloPeriodika
  • 19
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 28137
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/14:10288976
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • protein; surfaces; au(111); glutathione; adsorption; l-cystine; au nanoparticles; interparticle interactions; amino-acid; ray photoelectron-spectroscopy (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [B7F4D29B693F]
http://linked.open...i/riv/nazevZdroje
  • Journal of Physical Chemistry C
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 118
http://linked.open...iv/tvurceVysledku
  • Tsud, Nataliya
  • Feyer, Vitaliy
  • Prince, Kevin C.
  • Acres, Robert G.
  • Cadino, Elvio
http://linked.open...ain/vavai/riv/wos
  • 000336198900073
issn
  • 1932-7447
number of pages
http://bibframe.org/vocab/doi
  • 10.1021/jp502401w
http://localhost/t...ganizacniJednotka
  • 11320
Faceted Search & Find service v1.16.116 as of Feb 22 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3239 as of Feb 22 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software