About: ITERATED POWER INTERSECTIONS OF IDEALS IN RINGS OF ITERATED DIFFERENTIAL POLYNOMIALS     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Let R be an n-iterated ring of differential polynomials over a commutative noetherian domain which is a Q-algebra. We will prove that for every proper ideal I of R, the (n + 1)-iterated intersection I(n + 1) of powers of I equals zero. A standard application includes the freeness of non-finitely generated projective modules over such rings. If I is a proper ideal of the universal enveloping algebra of a finite-dimensional solvable Lie algebra over a field of characteristic zero, then we will improve the above estimate by showing that I(2) = 0.
  • Let R be an n-iterated ring of differential polynomials over a commutative noetherian domain which is a Q-algebra. We will prove that for every proper ideal I of R, the (n + 1)-iterated intersection I(n + 1) of powers of I equals zero. A standard application includes the freeness of non-finitely generated projective modules over such rings. If I is a proper ideal of the universal enveloping algebra of a finite-dimensional solvable Lie algebra over a field of characteristic zero, then we will improve the above estimate by showing that I(2) = 0. (en)
Title
  • ITERATED POWER INTERSECTIONS OF IDEALS IN RINGS OF ITERATED DIFFERENTIAL POLYNOMIALS
  • ITERATED POWER INTERSECTIONS OF IDEALS IN RINGS OF ITERATED DIFFERENTIAL POLYNOMIALS (en)
skos:prefLabel
  • ITERATED POWER INTERSECTIONS OF IDEALS IN RINGS OF ITERATED DIFFERENTIAL POLYNOMIALS
  • ITERATED POWER INTERSECTIONS OF IDEALS IN RINGS OF ITERATED DIFFERENTIAL POLYNOMIALS (en)
skos:notation
  • RIV/00216208:11320/13:10188774!RIV14-GA0-11320___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GBP201/12/G028)
http://linked.open...iv/cisloPeriodika
  • 7
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 81375
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/13:10188774
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • idempotent ideal; solvable Lie algebra; Ring of differential polynomials (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • SG - Singapurská republika
http://linked.open...ontrolniKodProRIV
  • [ABA72BA454E1]
http://linked.open...i/riv/nazevZdroje
  • Journal of Algebra and its Applications
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 12
http://linked.open...iv/tvurceVysledku
  • Příhoda, Pavel
  • Puninski, Gena
http://linked.open...ain/vavai/riv/wos
  • 000319078200001
issn
  • 0219-4988
number of pages
http://bibframe.org/vocab/doi
  • 10.1142/S0219498813500205
http://localhost/t...ganizacniJednotka
  • 11320
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software