About: On range searching with semialgebraic sets II     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Let $P$ be a set of $n$ points in $\R^d$. We present a linear-size data structure for answering range queries on $P$ with constant-complexity semialgebraic sets as ranges, in time close to $O(n^{1-1/d})$. It essentially matches the performance of similar structures for simplex range searching, and, for $d\ge 5$, significantly improves earlier solutions by the first two authors obtained in~1994. This almost settles a long-standing open problem in range searching. The data structure is based on the polynomial-partitioning technique of Guth and Katz, which shows that for a parameter $r$, $1 < r \le n$, there exists a $d$-variate polynomial $f$ of degree $O(r^{1/d})$ such that each connected component of $\R^d\setminus Z(f)$ contains at most $n/r$ points of $P$, where $Z(f)$ is the zero set of $f$. We present an efficient randomized algorithm for computing such a polynomial partition, which is of independent interest and is likely to have additional applications.
  • Let $P$ be a set of $n$ points in $\R^d$. We present a linear-size data structure for answering range queries on $P$ with constant-complexity semialgebraic sets as ranges, in time close to $O(n^{1-1/d})$. It essentially matches the performance of similar structures for simplex range searching, and, for $d\ge 5$, significantly improves earlier solutions by the first two authors obtained in~1994. This almost settles a long-standing open problem in range searching. The data structure is based on the polynomial-partitioning technique of Guth and Katz, which shows that for a parameter $r$, $1 < r \le n$, there exists a $d$-variate polynomial $f$ of degree $O(r^{1/d})$ such that each connected component of $\R^d\setminus Z(f)$ contains at most $n/r$ points of $P$, where $Z(f)$ is the zero set of $f$. We present an efficient randomized algorithm for computing such a polynomial partition, which is of independent interest and is likely to have additional applications. (en)
Title
  • On range searching with semialgebraic sets II
  • On range searching with semialgebraic sets II (en)
skos:prefLabel
  • On range searching with semialgebraic sets II
  • On range searching with semialgebraic sets II (en)
skos:notation
  • RIV/00216208:11320/13:10173445!RIV14-MSM-11320___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I
http://linked.open...iv/cisloPeriodika
  • 6
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 93784
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/13:10173445
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • range searching; data structure; semialgebraic set (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [8F6A6976D7D9]
http://linked.open...i/riv/nazevZdroje
  • SIAM Journal on Computing
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 42
http://linked.open...iv/tvurceVysledku
  • Matoušek, Jiří
  • Agarwal, Pankaj
  • Sharir, Micha
http://linked.open...ain/vavai/riv/wos
  • 000328889400001
issn
  • 0097-5397
number of pages
http://bibframe.org/vocab/doi
  • 10.1137/120890855
http://localhost/t...ganizacniJednotka
  • 11320
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 39 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software