About: Water Chemistry on Model Ceria and Pt/Ceria Catalysts     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • We have studied the interaction of water with stoichiometric CeO2(111)/Cu(111), partially reduced CeO2-x/Cu(111), and Pt/CeO2/Cu(111) model catalysts by means of synchrotron-radiation photoelectron spectroscopy (SRPES), resonant photoemission spectroscopy (RPES) at the Ce 4d edge, infrared reflection absorption spectroscopy (IRAS), and density functional (DF) calculations. The principal species formed during adsorption of water at 160 K on CeO2(111) films is chemisorbed molecular water. On the surface of CeO2-x water partially dissociates yielding hydroxyl groups. By use of core-level PES, differentiation between chemisorbed water and hydroxyl groups is complicated by the overlap of the corresponding spectral features. Nevertheless, we determined three characteristic indicators for OH groups on ceria: (i) the presence of 1 pi and 3 sigma states in valence band (VB) PES; (ii) an increase of the binding energy (BE) separation between the O 1s spectral components of lattice oxygen and OH/H2O; (iii) an increase of the amplitude of the Ce3+ resonance in RPES. Chemisorbed water desorbs below 400 K and hydroxyl groups vanish at 500 K. The most favorable configurations of chemisorbed water and hydroxyl groups have been investigated by DF calculations. Both CeO2(111) and CeO2-x involve strongly tilted H2O and OH species which complicate their detection by IRAS. On Pt/CeO2, water adsorbs molecularly at 160 K but undergoes partial dissociation during annealing. The dissociation of water is accompanied by spillover of hydrogen to ceria and formation of hydroxyl groups between 180 and 250 K. Above 250 K, decomposition of hydroxyl groups and reverse spillover of hydrogen from ceria to Pt occurs, followed by desorption of molecular water.
  • We have studied the interaction of water with stoichiometric CeO2(111)/Cu(111), partially reduced CeO2-x/Cu(111), and Pt/CeO2/Cu(111) model catalysts by means of synchrotron-radiation photoelectron spectroscopy (SRPES), resonant photoemission spectroscopy (RPES) at the Ce 4d edge, infrared reflection absorption spectroscopy (IRAS), and density functional (DF) calculations. The principal species formed during adsorption of water at 160 K on CeO2(111) films is chemisorbed molecular water. On the surface of CeO2-x water partially dissociates yielding hydroxyl groups. By use of core-level PES, differentiation between chemisorbed water and hydroxyl groups is complicated by the overlap of the corresponding spectral features. Nevertheless, we determined three characteristic indicators for OH groups on ceria: (i) the presence of 1 pi and 3 sigma states in valence band (VB) PES; (ii) an increase of the binding energy (BE) separation between the O 1s spectral components of lattice oxygen and OH/H2O; (iii) an increase of the amplitude of the Ce3+ resonance in RPES. Chemisorbed water desorbs below 400 K and hydroxyl groups vanish at 500 K. The most favorable configurations of chemisorbed water and hydroxyl groups have been investigated by DF calculations. Both CeO2(111) and CeO2-x involve strongly tilted H2O and OH species which complicate their detection by IRAS. On Pt/CeO2, water adsorbs molecularly at 160 K but undergoes partial dissociation during annealing. The dissociation of water is accompanied by spillover of hydrogen to ceria and formation of hydroxyl groups between 180 and 250 K. Above 250 K, decomposition of hydroxyl groups and reverse spillover of hydrogen from ceria to Pt occurs, followed by desorption of molecular water. (en)
Title
  • Water Chemistry on Model Ceria and Pt/Ceria Catalysts
  • Water Chemistry on Model Ceria and Pt/Ceria Catalysts (en)
skos:prefLabel
  • Water Chemistry on Model Ceria and Pt/Ceria Catalysts
  • Water Chemistry on Model Ceria and Pt/Ceria Catalysts (en)
skos:notation
  • RIV/00216208:11320/12:10130855!RIV13-MSM-11320___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(LA08022), P(LG12003)
http://linked.open...iv/cisloPeriodika
  • 22
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 180722
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/12:10130855
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • growth; cu(111); photoemission; h2o; spectroscopy; adsorption; metal-surfaces; pt(111) surface; vibrational-modes; augmented-wave method (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [6C056E5C4E63]
http://linked.open...i/riv/nazevZdroje
  • Journal of Physical Chemistry C
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 116
http://linked.open...iv/tvurceVysledku
  • Johánek, Viktor
  • Matolín, Vladimír
  • Skála, Tomáš
  • Tsud, Nataliya
  • Prince, Kevin C.
  • Libuda, Joerg
  • Lykhach, Yaroslava
  • Happel, Markus
  • Aleksandrov, Hristiyan A.
  • Kozlov, Sergey M.
  • Neyman, Konstantin M.
  • St Petkov, Petko
  • Vayssilov, Georgi N.
http://linked.open...ain/vavai/riv/wos
  • 000304888700030
issn
  • 1932-7447
number of pages
http://bibframe.org/vocab/doi
  • 10.1021/jp302229x
http://localhost/t...ganizacniJednotka
  • 11320
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.116 as of Feb 22 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3239 as of Feb 22 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software