About: Importance Caching for Complex Illumination     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Realistic rendering requires computing the global illumination in the scene, and Monte Carlo integration is the best-known method for doing that. The key to good performance is to carefully select the costly integration samples, which is usually achieved via importance sampling. Unfortunately, visibility is difficult to factor into the importance distribution, which can greatly increase variance in highly occluded scenes with complex illumination. In this paper, we present importance caching - a novel approach that selects those samples with a distribution that includes visibility, while maintaining efficiency by exploiting illumination smoothness. At a sparse set of locations in the scene, we construct and cache several types of probability distributions with respect to a set of virtual point lights (VPLs), which notably include visibility. Each distribution type is optimized for a specific lighting condition. For every shading point, we then borrow the distributions from nearby cached locations and use them for VPL sampling, avoiding additional bias. A novel multiple importance sampling framework finally combines the many estimators. In highly occluded scenes, where visibility is a major source of variance in the incident radiance, our approach can reduce variance by more than an order of magnitude. Even in such complex scenes we can obtain accurate and low noise previews with full global illumination in a couple of seconds on a single mid-range CPU.
  • Realistic rendering requires computing the global illumination in the scene, and Monte Carlo integration is the best-known method for doing that. The key to good performance is to carefully select the costly integration samples, which is usually achieved via importance sampling. Unfortunately, visibility is difficult to factor into the importance distribution, which can greatly increase variance in highly occluded scenes with complex illumination. In this paper, we present importance caching - a novel approach that selects those samples with a distribution that includes visibility, while maintaining efficiency by exploiting illumination smoothness. At a sparse set of locations in the scene, we construct and cache several types of probability distributions with respect to a set of virtual point lights (VPLs), which notably include visibility. Each distribution type is optimized for a specific lighting condition. For every shading point, we then borrow the distributions from nearby cached locations and use them for VPL sampling, avoiding additional bias. A novel multiple importance sampling framework finally combines the many estimators. In highly occluded scenes, where visibility is a major source of variance in the incident radiance, our approach can reduce variance by more than an order of magnitude. Even in such complex scenes we can obtain accurate and low noise previews with full global illumination in a couple of seconds on a single mid-range CPU. (en)
Title
  • Importance Caching for Complex Illumination
  • Importance Caching for Complex Illumination (en)
skos:prefLabel
  • Importance Caching for Complex Illumination
  • Importance Caching for Complex Illumination (en)
skos:notation
  • RIV/00216208:11320/12:10127580!RIV13-MSM-11320___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I
http://linked.open...iv/cisloPeriodika
  • 2
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 140866
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/12:10127580
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Computer Graphics, Three-Dimensional Graphics and Realism-Raytracing, Radiosity (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [CEDB8E2284F3]
http://linked.open...i/riv/nazevZdroje
  • Computer Graphics Forum
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 31
http://linked.open...iv/tvurceVysledku
  • Křivánek, Jaroslav
  • Georgiev, Iliyan
  • Popov, Stefan
  • Slusallek, Philipp
http://linked.open...ain/vavai/riv/wos
  • 000306181700019
issn
  • 0167-7055
number of pages
http://bibframe.org/vocab/doi
  • 10.1111/j.1467-8659.2012.03049.x
http://localhost/t...ganizacniJednotka
  • 11320
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 39 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software