About: Towards semantic annotation supported by dependency linguistics and ILP     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • In this paper we present a method for semantic annotation of texts, which is based on a deep linguistic analysis (DLA) and Inductive Logic Programming (ILP). The combination of DLA and ILP have following benefits: Manual selection of learning features is not needed. The learning procedure has full available linguistic information at its disposal and it is capable to select relevant parts itself. Learned extraction rules can be easily visualized, understood and adapted by human. A description, implementation and initial evaluation of the method are the main contributions of the paper.
  • In this paper we present a method for semantic annotation of texts, which is based on a deep linguistic analysis (DLA) and Inductive Logic Programming (ILP). The combination of DLA and ILP have following benefits: Manual selection of learning features is not needed. The learning procedure has full available linguistic information at its disposal and it is capable to select relevant parts itself. Learned extraction rules can be easily visualized, understood and adapted by human. A description, implementation and initial evaluation of the method are the main contributions of the paper. (en)
Title
  • Towards semantic annotation supported by dependency linguistics and ILP
  • Towards semantic annotation supported by dependency linguistics and ILP (en)
skos:prefLabel
  • Towards semantic annotation supported by dependency linguistics and ILP
  • Towards semantic annotation supported by dependency linguistics and ILP (en)
skos:notation
  • RIV/00216208:11320/10:10035417!RIV11-GA0-11320___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GAP202/10/0761), P(GD201/09/H057), S, Z(MSM0021620838)
http://linked.open...iv/cisloPeriodika
  • 6497
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 293144
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/10:10035417
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Machine Learning; Information Extraction; Inductive Logic Programming; Dependency Linguistics; Semantic Annotation (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • DE - Spolková republika Německo
http://linked.open...ontrolniKodProRIV
  • [470AF1FD0EE9]
http://linked.open...i/riv/nazevZdroje
  • Lecture Notes in Computer Science
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 2010
http://linked.open...iv/tvurceVysledku
  • Dědek, Jan
http://linked.open...n/vavai/riv/zamer
issn
  • 0302-9743
number of pages
http://localhost/t...ganizacniJednotka
  • 11320
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 118 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software