Attributes | Values |
---|
rdf:type
| |
Description
| - Given points p and q in the plane, we are interested in separating them by two curves C_1 and C_2 such that every point of C_1 has equal distance to p and to C_2, and every point of C_2 has equal distance to C_1 and to q. We show by elementary geometric means that such C_1 and C_2 exist and are unique. Moreover, for p=(0,1) and q=(0,-1), C_1 is the graph of a function f, C_2 is the graph of -f, and $f$ is convex and analytic. We provide an algorithm that, given x, in polynomial time approximates f(x) with a given precision.
- Given points p and q in the plane, we are interested in separating them by two curves C_1 and C_2 such that every point of C_1 has equal distance to p and to C_2, and every point of C_2 has equal distance to C_1 and to q. We show by elementary geometric means that such C_1 and C_2 exist and are unique. Moreover, for p=(0,1) and q=(0,-1), C_1 is the graph of a function f, C_2 is the graph of -f, and $f$ is convex and analytic. We provide an algorithm that, given x, in polynomial time approximates f(x) with a given precision. (en)
- Dané dva body p a q v rovině chceme oddělit křivkami C_1 a C_2 tak, aby každý bod na C_1 měl stejnou vzdálenost k p a k C_2 a aby každý bod na C_2 měl stejnou vzdálenost ke q a k C_1. Elementárními geometrickými metodami ukážeme, že takové křivky existují a jsou určeny jednoznačně. Pro p=(0,1) a q=(0,-1) je C_1 grafem jisté funkce f a C_2 je grafem -f. Dokážeme, že f je konvexní analytická funkce, a popíšeme algoritmus, který pro dané x v polynomiálním čase aproximuje f(x) s předepsanou přesností. (cs)
|
Title
| - The distance trisector curve
- Křivka trisekce vzdálenosti (cs)
- The distance trisector curve (en)
|
skos:prefLabel
| - The distance trisector curve
- Křivka trisekce vzdálenosti (cs)
- The distance trisector curve (en)
|
skos:notation
| - RIV/00216208:11320/06:00003210!RIV07-MSM-11320___
|
http://linked.open.../vavai/riv/strany
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(1M0545), Z(MSM0021620838)
|
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/00216208:11320/06:00003210
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - distance; trisector; curve (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...v/mistoKonaniAkce
| |
http://linked.open...i/riv/mistoVydani
| |
http://linked.open...i/riv/nazevZdroje
| - Proc. 38th ACM Symposium on Theory of Computing
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...iv/tvurceVysledku
| |
http://linked.open...vavai/riv/typAkce
| |
http://linked.open.../riv/zahajeniAkce
| |
http://linked.open...n/vavai/riv/zamer
| |
number of pages
| |
http://purl.org/ne...btex#hasPublisher
| |
https://schema.org/isbn
| |
http://localhost/t...ganizacniJednotka
| |
is http://linked.open...avai/riv/vysledek
of | |