About: The distance trisector curve     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Given points p and q in the plane, we are interested in separating them by two curves C_1 and C_2 such that every point of C_1 has equal distance to p and to C_2, and every point of C_2 has equal distance to C_1 and to q. We show by elementary geometric means that such C_1 and C_2 exist and are unique. Moreover, for p=(0,1) and q=(0,-1), C_1 is the graph of a function f, C_2 is the graph of -f, and $f$ is convex and analytic. We provide an algorithm that, given x, in polynomial time approximates f(x) with a given precision.
  • Given points p and q in the plane, we are interested in separating them by two curves C_1 and C_2 such that every point of C_1 has equal distance to p and to C_2, and every point of C_2 has equal distance to C_1 and to q. We show by elementary geometric means that such C_1 and C_2 exist and are unique. Moreover, for p=(0,1) and q=(0,-1), C_1 is the graph of a function f, C_2 is the graph of -f, and $f$ is convex and analytic. We provide an algorithm that, given x, in polynomial time approximates f(x) with a given precision. (en)
  • Dané dva body p a q v rovině chceme oddělit křivkami C_1 a C_2 tak, aby každý bod na C_1 měl stejnou vzdálenost k p a k C_2 a aby každý bod na C_2 měl stejnou vzdálenost ke q a k C_1. Elementárními geometrickými metodami ukážeme, že takové křivky existují a jsou určeny jednoznačně. Pro p=(0,1) a q=(0,-1) je C_1 grafem jisté funkce f a C_2 je grafem -f. Dokážeme, že f je konvexní analytická funkce, a popíšeme algoritmus, který pro dané x v polynomiálním čase aproximuje f(x) s předepsanou přesností. (cs)
Title
  • The distance trisector curve
  • Křivka trisekce vzdálenosti (cs)
  • The distance trisector curve (en)
skos:prefLabel
  • The distance trisector curve
  • Křivka trisekce vzdálenosti (cs)
  • The distance trisector curve (en)
skos:notation
  • RIV/00216208:11320/06:00003210!RIV07-MSM-11320___
http://linked.open.../vavai/riv/strany
  • 336;343
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1M0545), Z(MSM0021620838)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 471935
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/06:00003210
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • distance; trisector; curve (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [2ABEC5ADEEB5]
http://linked.open...v/mistoKonaniAkce
  • New York, NY, USA
http://linked.open...i/riv/mistoVydani
  • New York, NY, USA
http://linked.open...i/riv/nazevZdroje
  • Proc. 38th ACM Symposium on Theory of Computing
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Matoušek, Jiří
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • ACM Press
https://schema.org/isbn
  • 1-59593-134-1
http://localhost/t...ganizacniJednotka
  • 11320
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 117 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software