About: Multiple Exocytotic Markers Accumulate at the Sites of Perifungal Membrane Biogenesis in Arbuscular Mycorrhizas     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Arbuscular mycorrhizas (AMs) are symbiotic interactions established within the roots of most plants by soil fungi belonging to the Glomeromycota. The extensive accommodation of the fungus in the root tissues largely takes place intracellularly, within a specialized interface compartment surrounded by the so-called perifungal membrane, an extension of the host plasmalemma. By combining live confocal imaging of green fluorescent protein (GFP)-tagged proteins and transmission electron microscopy (TEM), we have investigated the mechanisms leading to the biogenesis of this membrane. Our results show that pre-penetration responses and symbiotic interface construction are associated with extensive membrane dynamics. They involve the main components of the exocytotic machinery, with a major participation of the Golgi apparatus, as revealed by both TEM and in vivo GFP imaging. The labeling of known exocytosis markers, such as v-SNARE proteins of the VAMP72 family and the EXO84b subunit of the exocyst complex, allowed live imaging of the cell components involved in perifungal membrane construction, clarifying how this takes place ahead of the growing intracellular hypha. Lastly, our novel data are used to illustrate a model of membrane dynamics within the pre-penetration apparatus during AM fungal penetration.
  • Arbuscular mycorrhizas (AMs) are symbiotic interactions established within the roots of most plants by soil fungi belonging to the Glomeromycota. The extensive accommodation of the fungus in the root tissues largely takes place intracellularly, within a specialized interface compartment surrounded by the so-called perifungal membrane, an extension of the host plasmalemma. By combining live confocal imaging of green fluorescent protein (GFP)-tagged proteins and transmission electron microscopy (TEM), we have investigated the mechanisms leading to the biogenesis of this membrane. Our results show that pre-penetration responses and symbiotic interface construction are associated with extensive membrane dynamics. They involve the main components of the exocytotic machinery, with a major participation of the Golgi apparatus, as revealed by both TEM and in vivo GFP imaging. The labeling of known exocytosis markers, such as v-SNARE proteins of the VAMP72 family and the EXO84b subunit of the exocyst complex, allowed live imaging of the cell components involved in perifungal membrane construction, clarifying how this takes place ahead of the growing intracellular hypha. Lastly, our novel data are used to illustrate a model of membrane dynamics within the pre-penetration apparatus during AM fungal penetration. (en)
Title
  • Multiple Exocytotic Markers Accumulate at the Sites of Perifungal Membrane Biogenesis in Arbuscular Mycorrhizas
  • Multiple Exocytotic Markers Accumulate at the Sites of Perifungal Membrane Biogenesis in Arbuscular Mycorrhizas (en)
skos:prefLabel
  • Multiple Exocytotic Markers Accumulate at the Sites of Perifungal Membrane Biogenesis in Arbuscular Mycorrhizas
  • Multiple Exocytotic Markers Accumulate at the Sites of Perifungal Membrane Biogenesis in Arbuscular Mycorrhizas (en)
skos:notation
  • RIV/00216208:11310/12:10131261!RIV13-GA0-11310___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GAP305/11/1629), Z(AV0Z50380511), Z(MSM0021620858)
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 152436
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11310/12:10131261
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Symbiosis; Plant-microbe interactions; Membrane dynamics; Medicago truncatula; Exocytosis; Daucus carota (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [F39B0266F4B2]
http://linked.open...i/riv/nazevZdroje
  • Plant and Cell Physiology
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 53
http://linked.open...iv/tvurceVysledku
  • Žárský, Viktor
  • Bisseling, T.
  • Bonfante, P.
  • Faccio, A.
  • Fendrych, M.
  • Genre, A.
  • Ivanov, S.
http://linked.open...ain/vavai/riv/wos
  • 000299127600024
http://linked.open...n/vavai/riv/zamer
issn
  • 0032-0781
number of pages
http://bibframe.org/vocab/doi
  • 10.1093/pcp/pcr170
http://localhost/t...ganizacniJednotka
  • 11310
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 77 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software