About: Comparison of Cross-linked and Non-Cross-linked Acellular Porcine Dermal Scaffolds for Long-term Full-Thickness Hernia Repair in a Small Animal Model     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • BACKGROUND: This study compared the strength of incorporation and biocompatibility of 2 porcine-derived grafts (cross-linked and non-cross-linked) in a rat hernia model. METHODS: A standardized 2 x 4 cm(2) fascial defect was created in 30 Wistar rats and repaired with either a cross-linked or a non-cross-linked graft. The rats were killed 3, 6, and 12 months later. The strength of incorporation, vascularization, cellular invasion, foreign body reaction, and capsule formation were evaluated. RESULTS: Both graft materials showed cellular ingrowth and neovascularization by 3 months postimplantation. The average level of cellularization was significantly higher in the non-cross-linked grafts than in the cross-linked grafts at 6 months (2 vs 1; P = .029). Vascularization was significantly higher in the non-cross-linked grafts than in the cross-linked grafts at 6 months postimplantation (2 vs 1; P = .029) and insignificant at 3 months (2 vs 1.75; P = .311) and 12 months (1 vs 0.67; P = 1). The maximum load and breaking strength of both biomaterials increased during the study period. Overall, the strength of incorporation of the non-cross-linked grafts increased from 3 months (0.75 MPa) to 12 months (3.06 MPa) postimplantation. The strength of incorporation of the cross-linked grafts also increased from 3 months (0.59 MPa) to 12 months (1.58 MPa) postimplantation. CONCLUSIONS: The results of our study suggest that non-cross-linked grafts may be slightly more biocompatible and allow a more rapid and higher degree of cellular penetration and vascularization, resulting in stronger attachment to the tissues.
  • BACKGROUND: This study compared the strength of incorporation and biocompatibility of 2 porcine-derived grafts (cross-linked and non-cross-linked) in a rat hernia model. METHODS: A standardized 2 x 4 cm(2) fascial defect was created in 30 Wistar rats and repaired with either a cross-linked or a non-cross-linked graft. The rats were killed 3, 6, and 12 months later. The strength of incorporation, vascularization, cellular invasion, foreign body reaction, and capsule formation were evaluated. RESULTS: Both graft materials showed cellular ingrowth and neovascularization by 3 months postimplantation. The average level of cellularization was significantly higher in the non-cross-linked grafts than in the cross-linked grafts at 6 months (2 vs 1; P = .029). Vascularization was significantly higher in the non-cross-linked grafts than in the cross-linked grafts at 6 months postimplantation (2 vs 1; P = .029) and insignificant at 3 months (2 vs 1.75; P = .311) and 12 months (1 vs 0.67; P = 1). The maximum load and breaking strength of both biomaterials increased during the study period. Overall, the strength of incorporation of the non-cross-linked grafts increased from 3 months (0.75 MPa) to 12 months (3.06 MPa) postimplantation. The strength of incorporation of the cross-linked grafts also increased from 3 months (0.59 MPa) to 12 months (1.58 MPa) postimplantation. CONCLUSIONS: The results of our study suggest that non-cross-linked grafts may be slightly more biocompatible and allow a more rapid and higher degree of cellular penetration and vascularization, resulting in stronger attachment to the tissues. (en)
Title
  • Comparison of Cross-linked and Non-Cross-linked Acellular Porcine Dermal Scaffolds for Long-term Full-Thickness Hernia Repair in a Small Animal Model
  • Comparison of Cross-linked and Non-Cross-linked Acellular Porcine Dermal Scaffolds for Long-term Full-Thickness Hernia Repair in a Small Animal Model (en)
skos:prefLabel
  • Comparison of Cross-linked and Non-Cross-linked Acellular Porcine Dermal Scaffolds for Long-term Full-Thickness Hernia Repair in a Small Animal Model
  • Comparison of Cross-linked and Non-Cross-linked Acellular Porcine Dermal Scaffolds for Long-term Full-Thickness Hernia Repair in a Small Animal Model (en)
skos:notation
  • RIV/00216208:11110/14:10282306!RIV15-MSM-11110___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • V
http://linked.open...iv/cisloPeriodika
  • Jun
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 8041
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11110/14:10282306
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • hernia; cross-linking; biocompatibility; biologics; extracellular matrix (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [3B62DFB7DDEB]
http://linked.open...i/riv/nazevZdroje
  • ePlasty
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 14
http://linked.open...iv/tvurceVysledku
  • Veselý, Pavel
  • Molitor, Martin
  • Měšťák, Jan
  • Měšťák, Ondřej
  • Sukop, Andrej
  • Benkova, K.
  • Hromádková, Veronika
  • Jůzek, Robert
  • Miletín, Jakub
  • Spurkova, Z.
issn
  • 1937-5719
number of pages
http://localhost/t...ganizacniJednotka
  • 11110
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software