Although the simple and complex ferroelectric oxide materials are essential for many important industrial applications, details of the polarization fluctuations standing behind their high dielectric properties remain to be analyzed and understood. The reasons are primarily the severe limitations for the experimental investigations given by the nanometric scale of the characteristic correlation length as well as by the difficulties with THz frequency response measurements. The progress in novel techniques allowing to bridge the far-IR and microwave techniques in conjunction of the advent of computer-simulated finite-temperature material properties from first-principles-based effective-Hamiltonians now opens the possibility to overcome these limitations and to bring the understanding of the phenomena at the corresponding time and length-scales at a qualitatively new level. We propose to pursue a detailed study of the spatio-temporal polarization fluctuations in a few most perspective ferroelectric oxi (en)
Pomocí spektroskopických experimentů a počítačových simulací s efektivními hamiltoniány z prvních principů prostudovat odezvu nanoskopickych dynamickych klastrů v polárních perovskitech.
Dielektrická odezva feroelektrických perovskitových materiálů na infračervené elektromagnetické záření byla studována pomocí THz infračervené spektroskopie a počítačových simulací. Spolupráce českých a amerických vědců podpořená MŠMT umožnila porozumět mechanizmům vzniku dynamických fluktuací polarizace v těchto materiálech. (cs)
The dielectric response of ferroelectric perovskite crystals to infrared waves was determined by THz spectroscopy and infrared reflectivity techniques as well as computer simulations. Joint research efforts of Czech and US researchers, supported by Czech Ministry of Education, allowed to elucidate the origin of dynamical polarization fluctuations identified in these materials. (en)