About: Reconfigurable ROS-based Resilient Reasoning Robotic Cooperating Systems     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Projekt, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • European manufacturing industry faces increasing product variances resulting as a consequence of frequent innovation, short product lifecycles, small series production, and shrinking production cycles. At the same time, production cost must be continuously reduced. Agile, transformable and re-usable automation and robotics is be a key enabler to manage those trends. However, few robotic components are designed for easy adaptation and reuse. To overcome those shortcomings, R5-COP focuses on agile manufacturing paradigms and specifically on modular robotic systems. Based on existing and newly developed methods for a formal modeling of hardware and software components, R5-COP will support model-based design, engineering, validation, and fast commissioning. Furthermore, using existing interface and middleware standards such as ROS, R5-COP will strongly facilitate integration of components from various suppliers. The proposed modular approach will not only be more flexible than state-of-the-art solutions, but will also reduce design, setup, and maintenance costs. Flexible use of robots naturally includes their close cooperation with humans. Therefore, robustness and safety are crucial requirements which will be assured by dedicated verification and validation methodologies. The formal specification framework will support component suppliers in efficiently verifying and certifying their modules. R5-COP will help to identify and develop reconfigurable key hardware and software components, and to show the feasibility and capability of the approach in living labs in manufacturing and service demonstrator environments.
  • European manufacturing industry faces increasing product variances resulting as a consequence of frequent innovation, short product lifecycles, small series production, and shrinking production cycles. At the same time, production cost must be continuously reduced. Agile, transformable and re-usable automation and robotics is be a key enabler to manage those trends. However, few robotic components are designed for easy adaptation and reuse. To overcome those shortcomings, R5-COP focuses on agile manufacturing paradigms and specifically on modular robotic systems. Based on existing and newly developed methods for a formal modeling of hardware and software components, R5-COP will support model-based design, engineering, validation, and fast commissioning. Furthermore, using existing interface and middleware standards such as ROS, R5-COP will strongly facilitate integration of components from various suppliers. The proposed modular approach will not only be more flexible than state-of-the-art solutions, but will also reduce design, setup, and maintenance costs. Flexible use of robots naturally includes their close cooperation with humans. Therefore, robustness and safety are crucial requirements which will be assured by dedicated verification and validation methodologies. The formal specification framework will support component suppliers in efficiently verifying and certifying their modules. R5-COP will help to identify and develop reconfigurable key hardware and software components, and to show the feasibility and capability of the approach in living labs in manufacturing and service demonstrator environments. (en)
Title
  • Reconfigurable ROS-based Resilient Reasoning Robotic Cooperating Systems
  • Reconfigurable ROS-based Resilient Reasoning Robotic Cooperating Systems (en)
skos:notation
  • 7H14013
http://linked.open...avai/cep/aktivita
http://linked.open...kovaStatniPodpora
http://linked.open...ep/celkoveNaklady
http://linked.open...datumDodatniDoRIV
http://linked.open...i/cep/druhSouteze
http://linked.open...ep/duvernostUdaju
http://linked.open.../cep/fazeProjektu
http://linked.open...ai/cep/hlavniObor
http://linked.open...vai/cep/kategorie
http://linked.open.../cep/klicovaSlova
  • autonomous systems; flexibility; reconfigurabilty; seamless integration of robotic components; resiliency; run-time safety assurance; mixed-criticality execution; middleware; ROS Industrial (en)
http://linked.open...ep/partnetrHlavni
http://linked.open...inujicichPrijemcu
http://linked.open...cep/pocetPrijemcu
http://linked.open...ocetSpoluPrijemcu
http://linked.open.../pocetVysledkuRIV
http://linked.open...enychVysledkuVRIV
http://linked.open...lneniVMinulemRoce
http://linked.open.../prideleniPodpory
http://linked.open...iciPoslednihoRoku
http://linked.open...atUdajeProjZameru
http://linked.open...usZobrazovaneFaze
http://linked.open...ai/cep/typPojektu
http://linked.open...ep/ukonceniReseni
http://linked.open...ep/zahajeniReseni
http://linked.open...tniCyklusProjektu
http://linked.open.../cep/klicoveSlovo
  • autonomous systems
  • flexibility
  • resiliency
  • middleware
  • mixed-criticality execution
  • reconfigurabilty
  • run-time safety assurance
  • seamless integration of robotic components
is http://linked.open...vavai/cep/projekt of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 46 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software