About: IMPROVING THE AIRCRAFT SAFETY BY SELF HEALING STRUCTURE AND PROTECTING NANOFILLERS     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Projekt, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Inspection and Maintenance are important aspects when considering the availability of aircraft for revenue flights. Modern airframe design is exploiting new exciting developments in materials and structures to construct ever more efficient air vehicle able to enable smart maintenance including self-repair capabilities. The improvement in the aircraft safety by self-healing structures and protecting nanofillers is a revolutionary approach that should lead to the creation of novel generation of multifunctional aircraft materials with strongly desired properties and design flexibilities. In recent years, the development of new nanostructured materials has enabled an evolving shift from single purpose materials to multifunctional systems that can provide greater value than the base materials alone; these materials possess attributes beyond the basic strength and stiffness that typically drive the science and engineering of the material for structural systems. Structural materials can be designed to have integrated electrical, electromagnetic, flame resistance, regenerative ability and possibly other functionalities that work in synergy to provide advantages that reach beyond that of the sum of the individual capabilities. Materials of this kind have tremendous potential to impact future structural performance by reducing size, weight, cost, power consumption and complexity while improving efficiency, safety and versatility. Actually, also a very advanced design of an aircraft has to take required inspection intervals into account. An aircraft with inherent protective and smart abilities could help to significantly extend the inspection intervals, thereby increasing aircraft availability. The main objective of this EASN endorsed proposal is to develop and apply a multifunctional autonomically healing composite for aeronautic applications. The multifunctional composite systems will be developed with the aim of overcoming serious drawbacks of the composite materials.
  • Inspection and Maintenance are important aspects when considering the availability of aircraft for revenue flights. Modern airframe design is exploiting new exciting developments in materials and structures to construct ever more efficient air vehicle able to enable smart maintenance including self-repair capabilities. The improvement in the aircraft safety by self-healing structures and protecting nanofillers is a revolutionary approach that should lead to the creation of novel generation of multifunctional aircraft materials with strongly desired properties and design flexibilities. In recent years, the development of new nanostructured materials has enabled an evolving shift from single purpose materials to multifunctional systems that can provide greater value than the base materials alone; these materials possess attributes beyond the basic strength and stiffness that typically drive the science and engineering of the material for structural systems. Structural materials can be designed to have integrated electrical, electromagnetic, flame resistance, regenerative ability and possibly other functionalities that work in synergy to provide advantages that reach beyond that of the sum of the individual capabilities. Materials of this kind have tremendous potential to impact future structural performance by reducing size, weight, cost, power consumption and complexity while improving efficiency, safety and versatility. Actually, also a very advanced design of an aircraft has to take required inspection intervals into account. An aircraft with inherent protective and smart abilities could help to significantly extend the inspection intervals, thereby increasing aircraft availability. The main objective of this EASN endorsed proposal is to develop and apply a multifunctional autonomically healing composite for aeronautic applications. The multifunctional composite systems will be developed with the aim of overcoming serious drawbacks of the composite materials. (en)
Title
  • IMPROVING THE AIRCRAFT SAFETY BY SELF HEALING STRUCTURE AND PROTECTING NANOFILLERS
  • IMPROVING THE AIRCRAFT SAFETY BY SELF HEALING STRUCTURE AND PROTECTING NANOFILLERS (en)
skos:notation
  • 7E13060
http://linked.open...avai/cep/aktivita
http://linked.open...kovaStatniPodpora
http://linked.open...ep/celkoveNaklady
http://linked.open...datumDodatniDoRIV
http://linked.open...i/cep/druhSouteze
http://linked.open...ep/duvernostUdaju
http://linked.open.../cep/fazeProjektu
http://linked.open...ai/cep/hlavniObor
http://linked.open...vai/cep/kategorie
http://linked.open.../cep/klicovaSlova
  • Self-healing multifunctional materials,; electrical conductivity; impact damage resistance (en)
http://linked.open...ep/partnetrHlavni
http://linked.open...inujicichPrijemcu
http://linked.open...cep/pocetPrijemcu
http://linked.open...ocetSpoluPrijemcu
http://linked.open.../pocetVysledkuRIV
http://linked.open...enychVysledkuVRIV
http://linked.open...lneniVMinulemRoce
http://linked.open.../prideleniPodpory
http://linked.open...iciPoslednihoRoku
http://linked.open...atUdajeProjZameru
http://linked.open...usZobrazovaneFaze
http://linked.open...ai/cep/typPojektu
http://linked.open...ep/ukonceniReseni
http://linked.open...ep/zahajeniReseni
http://linked.open...tniCyklusProjektu
http://linked.open...n/vavai/cep/vyzva
http://linked.open.../cep/klicoveSlovo
  • electrical conductivity
  • Self-healing multifunctional materials
is http://linked.open...vavai/riv/projekt of
is http://linked.open...vavai/cep/projekt of
Faceted Search & Find service v1.16.116 as of Feb 22 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3239 as of Feb 22 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software