About: Sustainable HydrothermaI Manufacturing of Nanomaterials     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Projekt, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • It is vital that nanomanufacturing routes facilitate an increase in production whilst being %22green%22, sustainable, low cost and capable of producing high quality materials. Continuous hydrothermal synthesis is an enabling and underpinning technology that is ready to prove itself at industrial scale as a result of recent breakthroughs in reactor design which suggest that it could now be scaled over 100 tons per annum. Academic specialists with international reputations in reactor modelling and kinetics and metrology will develop the know how needed to scale up the current pilot scale system. Selected project partners with expertise in sustainability modelling and life cycle assessment will quantify the environmental impact and benefits of a process that uses water as a recyclable solvent, whilst producing the highest quality, dispersed and formulated products. In addition to scale up production, the process will be improved through case studies with industrial end users in four key areas – printed electronics with SOVY; surface coatings with CRF, PPG and SOVY; healthcare and medical with ENDOR and CERA; hybrid polymers and materials with ITAP, TopGaN and REPSOL. Further value will be added to the project by working on new materials that have been identified as key future targets but cannot be currently made, or made in significant quantities. The consortium is founded on the principle that the whole value chain (from nanoparticle production to final product) must be involved in the development of the technology. This will not only inform the development stages of the production process but also maximise %22market pull%22, rather than simply relying on subsequent %22technology push%22.
  • It is vital that nanomanufacturing routes facilitate an increase in production whilst being %22green%22, sustainable, low cost and capable of producing high quality materials. Continuous hydrothermal synthesis is an enabling and underpinning technology that is ready to prove itself at industrial scale as a result of recent breakthroughs in reactor design which suggest that it could now be scaled over 100 tons per annum. Academic specialists with international reputations in reactor modelling and kinetics and metrology will develop the know how needed to scale up the current pilot scale system. Selected project partners with expertise in sustainability modelling and life cycle assessment will quantify the environmental impact and benefits of a process that uses water as a recyclable solvent, whilst producing the highest quality, dispersed and formulated products. In addition to scale up production, the process will be improved through case studies with industrial end users in four key areas – printed electronics with SOVY; surface coatings with CRF, PPG and SOVY; healthcare and medical with ENDOR and CERA; hybrid polymers and materials with ITAP, TopGaN and REPSOL. Further value will be added to the project by working on new materials that have been identified as key future targets but cannot be currently made, or made in significant quantities. The consortium is founded on the principle that the whole value chain (from nanoparticle production to final product) must be involved in the development of the technology. This will not only inform the development stages of the production process but also maximise %22market pull%22, rather than simply relying on subsequent %22technology push%22. (en)
Title
  • Sustainable HydrothermaI Manufacturing of Nanomaterials (en)
  • Sustainable HydrothermaI Manufacturing of Nanomaterials
skos:notation
  • 7E12084
http://linked.open...avai/cep/aktivita
http://linked.open...kovaStatniPodpora
http://linked.open...ep/celkoveNaklady
http://linked.open...datumDodatniDoRIV
http://linked.open...i/cep/druhSouteze
http://linked.open...ep/duvernostUdaju
http://linked.open.../cep/fazeProjektu
http://linked.open...ai/cep/hlavniObor
http://linked.open...vai/cep/kategorie
http://linked.open.../cep/klicovaSlova
  • zde zapsat 1 klíčové slovo, další přidat do dalších řádků; sustainable hydrothermal manufacturing of nanomaterials; hydrothermal synthesis; nanomaterials; nanoparticles; life cycle costing; life cycle assessment (en)
http://linked.open...ep/partnetrHlavni
http://linked.open...inujicichPrijemcu
http://linked.open...cep/pocetPrijemcu
http://linked.open...ocetSpoluPrijemcu
http://linked.open.../pocetVysledkuRIV
http://linked.open...enychVysledkuVRIV
http://linked.open...lneniVMinulemRoce
http://linked.open.../prideleniPodpory
http://linked.open...iciPoslednihoRoku
http://linked.open...atUdajeProjZameru
http://linked.open...usZobrazovaneFaze
http://linked.open...ai/cep/typPojektu
http://linked.open...ep/ukonceniReseni
http://linked.open.../cep/vedlejsiObor
http://linked.open...ep/zahajeniReseni
http://linked.open...tniCyklusProjektu
http://linked.open...n/vavai/cep/vyzva
http://linked.open.../cep/klicoveSlovo
  • hydrothermal synthesis
  • nanomaterials
  • nanoparticles
  • další přidat do dalších řádků
  • life cycle costing
  • zde zapsat 1 klíčové slovo
  • sustainable hydrothermal manufacturing of nanomaterials
is http://linked.open...vavai/riv/projekt of
is http://linked.open...vavai/cep/projekt of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software