About: Pattern REcognition-based Statistically Enhanced MT     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Projekt, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • This proposal describes PRESEMT, a flexible and adaptable MT system, based on a language-independent method, whose principles ensure easy portability to new language pairs. This method attempts to overcome well-known problems of other MT approaches, e.g. bilingual corpora compilation or creation of new rules per language pair. PRESEMT will address the issue of effectively managing multilingual content and is expected to suggest a language-independent machine-learning-based methodology. The key aspects of PRESEMT involve syntactic phrase-based modelling, pattern recognition approaches (such as extended clustering or neural networks) or game theory techniques towards the development of a language-independent analysis, evolutionary algorithms for system optimisation. It is intended to be of a hybrid nature, combining linguistic processing with the positive aspects of corpus-driven approaches, such as SMT and EBMT. In order for PRESEMT to be easily amenable to new language pairs, relatively inexp (en)
  • This proposal describes PRESEMT, a flexible and adaptable MT system, based on a language-independent method, whose principles ensure easy portability to new language pairs. This method attempts to overcome well-known problems of other MT approaches, e.g. bilingual corpora compilation or creation of new rules per language pair. PRESEMT will address the issue of effectively managing multilingual content and is expected to suggest a language-independent machine-learning-based methodology. The key aspects of PRESEMT involve syntactic phrase-based modelling, pattern recognition approaches (such as extended clustering or neural networks) or game theory techniques towards the development of a language-independent analysis, evolutionary algorithms for system optimisation. It is intended to be of a hybrid nature, combining linguistic processing with the positive aspects of corpus-driven approaches, such as SMT and EBMT. In order for PRESEMT to be easily amenable to new language pairs, relatively inexp
Title
  • Pattern REcognition-based Statistically Enhanced MT (en)
  • Pattern REcognition-based Statistically Enhanced MT
skos:notation
  • 7E10057
http://linked.open...avai/cep/aktivita
http://linked.open...kovaStatniPodpora
http://linked.open...ep/celkoveNaklady
http://linked.open...datumDodatniDoRIV
http://linked.open...i/cep/druhSouteze
http://linked.open...ep/duvernostUdaju
http://linked.open.../cep/fazeProjektu
http://linked.open...ai/cep/hlavniObor
http://linked.open...hodnoceniProjektu
http://linked.open...vai/cep/kategorie
http://linked.open.../cep/klicovaSlova
  • machine translation; pattern recognition; SMT; language-independen method; syntactic phrase-based modelling; evolutionary algorithms (en)
http://linked.open...ep/partnetrHlavni
http://linked.open...inujicichPrijemcu
http://linked.open...cep/pocetPrijemcu
http://linked.open...ocetSpoluPrijemcu
http://linked.open.../pocetVysledkuRIV
http://linked.open...enychVysledkuVRIV
http://linked.open...lneniVMinulemRoce
http://linked.open.../prideleniPodpory
http://linked.open...iciPoslednihoRoku
http://linked.open...atUdajeProjZameru
http://linked.open...usZobrazovaneFaze
http://linked.open...ai/cep/typPojektu
http://linked.open...ep/ukonceniReseni
http://linked.open.../cep/vedlejsiObor
http://linked.open...ep/zahajeniReseni
http://linked.open...jektu+dodavatelem
  • Following the condition that the candidate of financial contribution was evaluated and afterwards selected by international provider in accordance with the rules of the program the Ministry of Education, Youth ans Sports does not realize the evaluation of project results. The project is evaluated only after its approval by an international provider. (en)
  • Hodnocení výsledků řešení ministerstvo neprovádí, neboť podmínkou podpory je, že uchazeč byl vybrán mezinárodním poskytovatelem v souladu s pravidly příslušného programu. Projekt je hodnocen až po jeho schválení mezinárodním poskytovatelem. (cs)
http://linked.open...tniCyklusProjektu
http://linked.open...n/vavai/cep/vyzva
http://linked.open.../cep/klicoveSlovo
  • machine translation
  • pattern recognition
  • SMT
  • language-independen method
  • syntactic phrase-based modelling
is http://linked.open...vavai/riv/projekt of
is http://linked.open...vavai/cep/projekt of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 41 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software