About: Metrology to enable high temperature erosion testing     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Projekt, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • The efficiency of high temperature energy generation plant and aero-engines is critically impacted by solid particle erosion, particularly at elevated temperatures. This damage process can reduce the efficiency of turbines by as much as 7 % to 10 %, and in the case of a large power plant cause an additional emission of 250,000 tonnes of CO2 over the lifetime of the plant. The cause and type of solid particle erosion varies across different industries and locations in plant, for instance the particles could be volcanic ash in aero-engines, fly ash in boilers, exfoliated scale in steam turbines or mineral matter in oil excavation. In all cases the performance of materials can be improved through better surface engineering and coatings, but the development of these is restricted due to lack of generic models, well controlled and instrumented tests and international standards. A framework is required therefore that can be applied to these different situations to characterise the high temperature erosion performance of new materials and coatings and thereby accelerate their development and design. To achieve this, a step change in the test methods and control of high temperature solid particle erosion is required. However, limitations in current measurement capability within this form of test prevent the advancement. During high temperature erosion testing there a several key parameters that need to be measured and controlled; these include temperature (of the sample, gas and particles), flow rate, size and shape of the erodent, angle of incidence of the particle stream and nozzle design. The ability of measure the erosion rate and damage accumulation during the test is also very desirable, but is very challenging.
  • The efficiency of high temperature energy generation plant and aero-engines is critically impacted by solid particle erosion, particularly at elevated temperatures. This damage process can reduce the efficiency of turbines by as much as 7 % to 10 %, and in the case of a large power plant cause an additional emission of 250,000 tonnes of CO2 over the lifetime of the plant. The cause and type of solid particle erosion varies across different industries and locations in plant, for instance the particles could be volcanic ash in aero-engines, fly ash in boilers, exfoliated scale in steam turbines or mineral matter in oil excavation. In all cases the performance of materials can be improved through better surface engineering and coatings, but the development of these is restricted due to lack of generic models, well controlled and instrumented tests and international standards. A framework is required therefore that can be applied to these different situations to characterise the high temperature erosion performance of new materials and coatings and thereby accelerate their development and design. To achieve this, a step change in the test methods and control of high temperature solid particle erosion is required. However, limitations in current measurement capability within this form of test prevent the advancement. During high temperature erosion testing there a several key parameters that need to be measured and controlled; these include temperature (of the sample, gas and particles), flow rate, size and shape of the erodent, angle of incidence of the particle stream and nozzle design. The ability of measure the erosion rate and damage accumulation during the test is also very desirable, but is very challenging. (en)
Title
  • Metrology to enable high temperature erosion testing
  • Metrology to enable high temperature erosion testing (en)
skos:notation
  • 7AX13022
http://linked.open...avai/cep/aktivita
http://linked.open...kovaStatniPodpora
http://linked.open...ep/celkoveNaklady
http://linked.open...datumDodatniDoRIV
http://linked.open...i/cep/druhSouteze
http://linked.open...ep/duvernostUdaju
http://linked.open.../cep/fazeProjektu
http://linked.open...ai/cep/hlavniObor
http://linked.open...vai/cep/kategorie
http://linked.open.../cep/klicovaSlova
  • metrology; high temperature; erosion testing (en)
http://linked.open...ep/partnetrHlavni
http://linked.open...inujicichPrijemcu
http://linked.open...cep/pocetPrijemcu
http://linked.open...ocetSpoluPrijemcu
http://linked.open.../pocetVysledkuRIV
http://linked.open...enychVysledkuVRIV
http://linked.open...lneniVMinulemRoce
http://linked.open.../prideleniPodpory
http://linked.open...iciPoslednihoRoku
http://linked.open...atUdajeProjZameru
http://linked.open...usZobrazovaneFaze
http://linked.open...ai/cep/typPojektu
http://linked.open...ep/ukonceniReseni
http://linked.open...ep/zahajeniReseni
http://linked.open...tniCyklusProjektu
http://linked.open...n/vavai/cep/vyzva
http://linked.open.../cep/klicoveSlovo
  • metrology
  • high temperature
is http://linked.open...vavai/cep/projekt of
Faceted Search & Find service v1.16.116 as of Feb 22 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3239 as of Feb 22 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software