Attributes | Values |
---|
rdf:type
| |
Description
| - Outstanding progress has been made in recent years in developing novel structures and applications for direct fabrication of 3D nanosurfaces. However, exploitation is limited by lack of suitable manufacturing technologies. In this project we will develop innovative in-line high throughput technologies based on atmospheric pressure surface and plasma technologies. The two identified approaches to direct 3D nanostructuring are etching for manufacturing of nanostructures tailored for specific applications, and coating. Major impact areas were selected, demonstrating different application fields. Impact Area 1 focuses on structures for solar cell surfaces. Nanostructured surfaces have the potential to improve efficiencies of cells by up to 25% (rel), having dramatic impact on commercial viability. Impact Area 2 focuses on biocidal surface structures. Increasing concerns about infections leading to the conclusion, that only multi-action approaches for control of infection transfer can be effective. We pl (en)
- Outstanding progress has been made in recent years in developing novel structures and applications for direct fabrication of 3D nanosurfaces. However, exploitation is limited by lack of suitable manufacturing technologies. In this project we will develop innovative in-line high throughput technologies based on atmospheric pressure surface and plasma technologies. The two identified approaches to direct 3D nanostructuring are etching for manufacturing of nanostructures tailored for specific applications, and coating. Major impact areas were selected, demonstrating different application fields. Impact Area 1 focuses on structures for solar cell surfaces. Nanostructured surfaces have the potential to improve efficiencies of cells by up to 25% (rel), having dramatic impact on commercial viability. Impact Area 2 focuses on biocidal surface structures. Increasing concerns about infections leading to the conclusion, that only multi-action approaches for control of infection transfer can be effective. We pl (cs)
|
Title
| - FLEXIBLE PRODUCTION TECHNOLOGIES AND EQUIPMENT BASED ON ATMOSPHERIC PRESSURE PLASMA PROCESSING FOR 3D NANO STRUCTURED SURFACES (en)
- FLEXIBLE PRODUCTION TECHNOLOGIES AND EQUIPMENT BASED ON ATMOSPHERIC PRESSURE PLASMA PROCESSING FOR 3D NANO STRUCTURED SURFACES (cs)
|
http://linked.open...vai/cislo-smlouvy
| |
http://linked.open...avai/druh-souteze
| |
http://linked.open...domain/vavai/faze
| |
http://linked.open...vavai/hlavni-obor
| |
http://linked.open...vai/vedlejsi-obor
| |
http://linked.open...vavai/id-aktivity
| |
http://linked.open.../vavai/id-souteze
| |
http://linked.open...n/vavai/kategorie
| |
http://linked.open...vai/klicova-slova
| - atmospheric pressure technologies; nano structured surfaces; plasma chemical etching; bioactive surfaces; transparent conductive surfaces; photovoltaics; aligned single wall carbon nanotubes (en)
|
http://linked.open...avai/konec-reseni
| |
http://linked.open...nujicich-prijemcu
| |
http://linked.open...avai/poskytovatel
| |
http://linked.open...avai/start-reseni
| |
http://linked.open...ai/statni-podpora
| |
http://linked.open...vavai/typProjektu
| |
http://linked.open...ai/uznane-naklady
| |
http://linked.open...ai/pocet-prijemcu
| |
http://linked.open...cet-spoluprijemcu
| |
http://linked.open...ai/pocet-vysledku
| |
http://linked.open...ku-zverejnovanych
| |
is http://linked.open...ain/vavai/projekt
of | |