About: Reactive oxygen species are generated by the respiratory complex II - evidence for lack of contribution of the reverse electron flow in complex I     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Succinate-driven oxidation via complex II (CII) may have a significant contribution towards the high rates of production of reactive oxygen species (ROS) by mitochondria. Here, we show that the CII Q site inhibitor thenoyltrifluoroacetone (TTFA) blocks succinate + rotenone-driven ROS production, whereas the complex III (CIII) Qo inhibitor stigmatellin has no effect, indicating that CII, not CIII, is the ROS-producing site. The complex I (CI) inhibitor rotenone partially reduces the ROS production driven by high succinate levels (5 mm), which is commonly interpreted as being due to inhibition of a reverse electron flow from CII to CI. However, experimental evidence presented here contradicts the model of reverse electron flow. First, ROS levels produced using succinate + rotenone were significantly higher than those produced using glutamate + malate + rotenone. Second, in tumor mitochondria, succinate-driven ROS production was significantly increased (not decreased) by rotenone. Third, in liver mitochondria, rotenone had no effects on succinate-driven ROS production. Fourth, using isolated heart or hepatoma (AS-30D) mitochondria, the CII Qp anti-cancer drug mitochondrially targeted vitamin E succinate (MitoVES) induced elevated ROS production in the presence of low levels of succinate(0.5 mm), but rotenone had no effect. Using sub-mitochondrial particles, the Cu-based anti-cancer drug Casiopeina II-gly enhanced succinate-driven ROS production. Thus, the present results are inconsistent with and question the interpretation of reverse electron flow from CII to CI and the rotenone effect on ROS production supported by succinate oxidation. Instead, a thermodynamically more favorable explanation is that, in the absence of CIII or complex IV (CIV) inhibitors (which, when added, facilitate reverse electron flow by inducing accumulation of ubiquinol, the CI product), the CII redox centers are the major source of succinate-driven ROS production.
  • Succinate-driven oxidation via complex II (CII) may have a significant contribution towards the high rates of production of reactive oxygen species (ROS) by mitochondria. Here, we show that the CII Q site inhibitor thenoyltrifluoroacetone (TTFA) blocks succinate + rotenone-driven ROS production, whereas the complex III (CIII) Qo inhibitor stigmatellin has no effect, indicating that CII, not CIII, is the ROS-producing site. The complex I (CI) inhibitor rotenone partially reduces the ROS production driven by high succinate levels (5 mm), which is commonly interpreted as being due to inhibition of a reverse electron flow from CII to CI. However, experimental evidence presented here contradicts the model of reverse electron flow. First, ROS levels produced using succinate + rotenone were significantly higher than those produced using glutamate + malate + rotenone. Second, in tumor mitochondria, succinate-driven ROS production was significantly increased (not decreased) by rotenone. Third, in liver mitochondria, rotenone had no effects on succinate-driven ROS production. Fourth, using isolated heart or hepatoma (AS-30D) mitochondria, the CII Qp anti-cancer drug mitochondrially targeted vitamin E succinate (MitoVES) induced elevated ROS production in the presence of low levels of succinate(0.5 mm), but rotenone had no effect. Using sub-mitochondrial particles, the Cu-based anti-cancer drug Casiopeina II-gly enhanced succinate-driven ROS production. Thus, the present results are inconsistent with and question the interpretation of reverse electron flow from CII to CI and the rotenone effect on ROS production supported by succinate oxidation. Instead, a thermodynamically more favorable explanation is that, in the absence of CIII or complex IV (CIV) inhibitors (which, when added, facilitate reverse electron flow by inducing accumulation of ubiquinol, the CI product), the CII redox centers are the major source of succinate-driven ROS production. (en)
Title
  • Reactive oxygen species are generated by the respiratory complex II - evidence for lack of contribution of the reverse electron flow in complex I
  • Reactive oxygen species are generated by the respiratory complex II - evidence for lack of contribution of the reverse electron flow in complex I (en)
skos:prefLabel
  • Reactive oxygen species are generated by the respiratory complex II - evidence for lack of contribution of the reverse electron flow in complex I
  • Reactive oxygen species are generated by the respiratory complex II - evidence for lack of contribution of the reverse electron flow in complex I (en)
skos:notation
  • RIV/86652036:_____/13:00392089!RIV14-AV0-86652036
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • Z(AV0Z50520701)
http://linked.open...iv/cisloPeriodika
  • 3
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 101553
http://linked.open...ai/riv/idVysledku
  • RIV/86652036:_____/13:00392089
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • anti-cancer drugs; mitochondria; respiratory complex II (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [800F00AA845E]
http://linked.open...i/riv/nazevZdroje
  • FEBS Journal
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 280
http://linked.open...iv/tvurceVysledku
  • Neužil, Jiří
  • Ralph, S. J.
  • Moreno-Sanchez, R.
  • Rodriguez-Enriquez, S.
  • Hernandez-Esquivel, L.
  • Marin-Hernandez, A.
  • Rivero-Segura, N. A.
http://linked.open...ain/vavai/riv/wos
  • 000314167100012
http://linked.open...n/vavai/riv/zamer
issn
  • 1742-464X
number of pages
http://bibframe.org/vocab/doi
  • 10.1111/febs.12086
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software