About: Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The biodegradation of four poly(l-lactic acid) (PLA) samples with molecular weights (MW) ranging from approximately 34 to 160kgmol-1 was investigated under composting conditions. The biodegradation rate decreased, and initial retardation was discernible in parallel with the increasing MW of the polymer. Furthermore, the specific surface area of the polymer sample was identified as the important factor accelerating biodegradation. Microbial community compositions and dynamics during the biodegradation of different PLA were monitored by temperature gradient gel electrophoresis, and were found to be virtually identical for all PLA materials and independent of MW. A specific PLA degrading bacteria was isolated and tentatively designated Thermopolyspora flexuosa FTPLA. The addition of a limited amount of low MW PLA did not accelerate the biodegradation of high MW PLA, suggesting that the process is not limited to the number of specific degraders and/or the induction of specific enzymes. In parallel, abiotic hydrolysis was investigated for the same set of samples and their courses found to be quasi-identical with the biodegradation of all four PLA samples investigated. This suggests that the abiotic hydrolysis represented a rate limiting step in the biodegradation process and the organisms present were not able to accelerate depolymerization significantly by the action of their enzymes.
  • The biodegradation of four poly(l-lactic acid) (PLA) samples with molecular weights (MW) ranging from approximately 34 to 160kgmol-1 was investigated under composting conditions. The biodegradation rate decreased, and initial retardation was discernible in parallel with the increasing MW of the polymer. Furthermore, the specific surface area of the polymer sample was identified as the important factor accelerating biodegradation. Microbial community compositions and dynamics during the biodegradation of different PLA were monitored by temperature gradient gel electrophoresis, and were found to be virtually identical for all PLA materials and independent of MW. A specific PLA degrading bacteria was isolated and tentatively designated Thermopolyspora flexuosa FTPLA. The addition of a limited amount of low MW PLA did not accelerate the biodegradation of high MW PLA, suggesting that the process is not limited to the number of specific degraders and/or the induction of specific enzymes. In parallel, abiotic hydrolysis was investigated for the same set of samples and their courses found to be quasi-identical with the biodegradation of all four PLA samples investigated. This suggests that the abiotic hydrolysis represented a rate limiting step in the biodegradation process and the organisms present were not able to accelerate depolymerization significantly by the action of their enzymes. (en)
Title
  • Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid)
  • Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid) (en)
skos:prefLabel
  • Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid)
  • Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid) (en)
skos:notation
  • RIV/70883521:28610/14:43871925!RIV15-MSM-28610___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED2.1.00/03.0111), P(GAP108/10/0200), S
http://linked.open...iv/cisloPeriodika
  • Neuveden
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 20289
http://linked.open...ai/riv/idVysledku
  • RIV/70883521:28610/14:43871925
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Polylactic acid; Biodegradation; Abiotic hydrolysis (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [03E4FF125438]
http://linked.open...i/riv/nazevZdroje
  • International Journal of Biological Macromolecules
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 71
http://linked.open...iv/tvurceVysledku
  • Commereuc, Sophie
  • Husárová, Lucie
  • Koutný, Marek
  • Kucharczyk, Pavel
  • Stloukal, Petr
  • Verney, Vincent
  • Pekařová, Silvie
  • Ramone, Audrey
issn
  • 0141-8130
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.ijbiomac.2014.04.050
http://localhost/t...ganizacniJednotka
  • 28610
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 25 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software