About: Chitosan-DNA complexes: Effect of molecular parameters on the efficiency of delivery     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • In the last few decades, there has been a growing interest towards the use of delivery systems for a more effective treatment of various diseases and the research increasingly focused on designing innovative solutions based on intra-cellular vectors. Among them, biocompatible DNA-polyelectrolyte complexes appear as a promising strategy for in vivo delivery of biologically active macromolecules. One of the most largely employed cationic polymer is Chitosan, which is special for its biological properties such as biodegradability, biocompatibility, mucoadhesivity, and permeability enhancer capacity. Due to this, complexes formed by condensation of DNA by Chitosan have been largely investigated for their potential use in gene therapy. Nevertheless the extensive efforts, the correlation between the physicochemical properties of the Chitosan-DNA polyplexes with their transfection efficiency still remains a central challenge. Moreover, the criteria and strategies for the design of efficient Chitosan-based gene delivery systems remain inconclusive. In a recent paper, we studied the aggregation behavior of Chitosan-DNA complexes and compared it with the predictions of existing models for the complexation of oppositely charged polyelectrolytes, showing that these models can serve as useful guide for the optimization of the complexes. Here, in order to understand the relation between physicochemical and transfection properties of Chitosan-DNA complexes, we study the efficiency of Chitosan-pDNA aggregates obtained indifferent conditions as vectors for DNA transfection. Small, globular and positively charged aggregates formed at large Chitosan excess, which can be obtained independently of the length of the Chitosan employed, appear to be the more effective for transfection, the more stable aggregates resulting the ones formed with longer chains.
  • In the last few decades, there has been a growing interest towards the use of delivery systems for a more effective treatment of various diseases and the research increasingly focused on designing innovative solutions based on intra-cellular vectors. Among them, biocompatible DNA-polyelectrolyte complexes appear as a promising strategy for in vivo delivery of biologically active macromolecules. One of the most largely employed cationic polymer is Chitosan, which is special for its biological properties such as biodegradability, biocompatibility, mucoadhesivity, and permeability enhancer capacity. Due to this, complexes formed by condensation of DNA by Chitosan have been largely investigated for their potential use in gene therapy. Nevertheless the extensive efforts, the correlation between the physicochemical properties of the Chitosan-DNA polyplexes with their transfection efficiency still remains a central challenge. Moreover, the criteria and strategies for the design of efficient Chitosan-based gene delivery systems remain inconclusive. In a recent paper, we studied the aggregation behavior of Chitosan-DNA complexes and compared it with the predictions of existing models for the complexation of oppositely charged polyelectrolytes, showing that these models can serve as useful guide for the optimization of the complexes. Here, in order to understand the relation between physicochemical and transfection properties of Chitosan-DNA complexes, we study the efficiency of Chitosan-pDNA aggregates obtained indifferent conditions as vectors for DNA transfection. Small, globular and positively charged aggregates formed at large Chitosan excess, which can be obtained independently of the length of the Chitosan employed, appear to be the more effective for transfection, the more stable aggregates resulting the ones formed with longer chains. (en)
Title
  • Chitosan-DNA complexes: Effect of molecular parameters on the efficiency of delivery
  • Chitosan-DNA complexes: Effect of molecular parameters on the efficiency of delivery (en)
skos:prefLabel
  • Chitosan-DNA complexes: Effect of molecular parameters on the efficiency of delivery
  • Chitosan-DNA complexes: Effect of molecular parameters on the efficiency of delivery (en)
skos:notation
  • RIV/70883521:28610/14:43871817!RIV15-MSM-28610___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • V
http://linked.open...iv/cisloPeriodika
  • Neuveden
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
  • Di Martino, Antonio
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 7169
http://linked.open...ai/riv/idVysledku
  • RIV/70883521:28610/14:43871817
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Transfection; Gene-therapy; Polyplexes; Polyelectrolytes; Chitosan; DNA (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [27B62AF0870F]
http://linked.open...i/riv/nazevZdroje
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 460
http://linked.open...iv/tvurceVysledku
  • Di Martino, Antonio
  • Ascenzioni, Fiorentina
  • Bomboi, Francesca
  • Bordi, Federico
  • Chronopoulou, Laura
  • Cifani, Noemi
  • Palocci, Cleofe
  • Pompili, Barbara
  • Sennato, Simona
http://linked.open...ain/vavai/riv/wos
  • 000341880200025
issn
  • 0927-7757
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.colsurfa.2013.12.022
http://localhost/t...ganizacniJednotka
  • 28610
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 25 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software