About: Pseudo Neural Networks for Iris Data Classification     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • This research deals with a novel approach to classification. Iris data was used for the experiments. Classical artificial neural networks, where a relation between inputs and outputs is based on the mathematical transfer functions and optimized numerical weights, was an inspiration for this work. Artificial neural networks need to optimize weights, but the structure and transfer functions are usually set up before the training. The proposed method utilizes the symbolic regression for synthesis of a whole structure, i.e. the relation between inputs and output(s). This paper differs from the previous approach where only one output pseudo node was used even for more classes. In this case, there were synthesized more node output equations as in classical artificial neural networks. The benchmark was iris data as in previous research. For experimentation, Differential Evolution (DE) for the main procedure and also for meta-evolution version of analytic programming (AP) was used.
  • This research deals with a novel approach to classification. Iris data was used for the experiments. Classical artificial neural networks, where a relation between inputs and outputs is based on the mathematical transfer functions and optimized numerical weights, was an inspiration for this work. Artificial neural networks need to optimize weights, but the structure and transfer functions are usually set up before the training. The proposed method utilizes the symbolic regression for synthesis of a whole structure, i.e. the relation between inputs and output(s). This paper differs from the previous approach where only one output pseudo node was used even for more classes. In this case, there were synthesized more node output equations as in classical artificial neural networks. The benchmark was iris data as in previous research. For experimentation, Differential Evolution (DE) for the main procedure and also for meta-evolution version of analytic programming (AP) was used. (en)
Title
  • Pseudo Neural Networks for Iris Data Classification
  • Pseudo Neural Networks for Iris Data Classification (en)
skos:prefLabel
  • Pseudo Neural Networks for Iris Data Classification
  • Pseudo Neural Networks for Iris Data Classification (en)
skos:notation
  • RIV/70883521:28140/14:43871643!RIV15-MSM-28140___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED2.1.00/03.0089)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 40772
http://linked.open...ai/riv/idVysledku
  • RIV/70883521:28140/14:43871643
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • classification.; symbolic regression; Pseudo neural networks (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [525B9BA23396]
http://linked.open...v/mistoKonaniAkce
  • Brescia
http://linked.open...i/riv/mistoVydani
  • Nottingham
http://linked.open...i/riv/nazevZdroje
  • 28th European Conference on Modelling and Simulation
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Šenkeřík, Roman
  • Komínková Oplatková, Zuzana
  • Komínek, Aleš
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://bibframe.org/vocab/doi
  • 10.7148/2014-0387
http://purl.org/ne...btex#hasPublisher
  • ECMS
https://schema.org/isbn
  • 978-0-9564944-8-1
http://localhost/t...ganizacniJednotka
  • 28140
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 82 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software