About: On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Uvažujeme kvanotvý hamiltonián ve tvaru H(t)=H+V(t) takový, že spektrum H je poloomezené a diskrétní a vlastní hodnototy se chovají jako E_n~n^a, kde 0<a<1. Speciálně to znamená, že mezery mezi následnými vlastními hodnotami klesají jako n^{a-1}. O V(t) se předpokládá, že je periodický, omezený a spojitě diferencovatlný v silném smyslu a že jeho maticové prvky vzhledem k spektrálnímu rozkladu H splňují odhad ||V (t)_{m,n}|| <= eps |m - n|^{-p} max{m, n}^{-2 g} pro m != n, kde eps > 0, p >= 1 a g = (1 - a)/2. Ukazujeme, že exponent difuze energie může být libovolně malý, pokud p je dostatečně velké a eps je dostatečně malé. Přesněji, pro každou počáteční podmínou Psi z Dom(H^{1/2}) difuze energie splňuje horní odhad <H>_Psi(t) = O(t^s ), kde s = a/(2[p -1] g - 1/2). Jako aplikaci uvažujeme hamiltonián H (t) = |p|^a + eps v(q,t) na L^2(S^1, dq), kerý byl v literatuře dřive diskutován Howlandem. (cs)
  • We consider quantum Hamiltonians of the form H (t) = H + V (t) where the spectrum of H is semibounded and discrete, and the eigenvalues behave as E_n ~ n^a , with 0 < a < 1. In particular, the gaps between successive eigenvalues decay as n^{a-1}. V (t) is supposed to be periodic, bounded, continuously differentiable in the strong sense and such that the matrix entries with respect to the spectral decomposition of H obey the estimate ||V (t)_{m,n}|| <= eps |m - n|^{-p} max{m, n}^{-2 g} for m != n, where eps > 0, p >= 1 and g = (1 - a)/2. We show that the energy diffusion exponent can be arbitrarily small provided p is sufficiently large and eps is small enough. More precisely, for any initial condition Psi in Dom(H^{1/2}), the diffusion of energy is bounded from above as <H>_Psi(t) = O(t^s ), where s = a/(2[p -1] g - 1/2). As an application we consider the Hamiltonian H (t) = |p|^a + eps v(q,t) on L^2(S^1, dq) which was discussed earlier in the literature by Howland.
  • We consider quantum Hamiltonians of the form H (t) = H + V (t) where the spectrum of H is semibounded and discrete, and the eigenvalues behave as E_n ~ n^a , with 0 < a < 1. In particular, the gaps between successive eigenvalues decay as n^{a-1}. V (t) is supposed to be periodic, bounded, continuously differentiable in the strong sense and such that the matrix entries with respect to the spectral decomposition of H obey the estimate ||V (t)_{m,n}|| <= eps |m - n|^{-p} max{m, n}^{-2 g} for m != n, where eps > 0, p >= 1 and g = (1 - a)/2. We show that the energy diffusion exponent can be arbitrarily small provided p is sufficiently large and eps is small enough. More precisely, for any initial condition Psi in Dom(H^{1/2}), the diffusion of energy is bounded from above as <H>_Psi(t) = O(t^s ), where s = a/(2[p -1] g - 1/2). As an application we consider the Hamiltonian H (t) = |p|^a + eps v(q,t) on L^2(S^1, dq) which was discussed earlier in the literature by Howland. (en)
Title
  • On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum
  • O růstu energie některých kvantových systémů s periodickou vnější silou a zmenšujícími se mezerami ve spektru (cs)
  • On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum (en)
skos:prefLabel
  • On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum
  • O růstu energie některých kvantových systémů s periodickou vnější silou a zmenšujícími se mezerami ve spektru (cs)
  • On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum (en)
skos:notation
  • RIV/68407700:21340/08:04136016!RIV09-MSM-21340___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA201/05/0857), Z(MSM6840770039)
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 384731
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21340/08:04136016
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • discrete spectrum; energy growth (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [C28DD3CB851A]
http://linked.open...i/riv/nazevZdroje
  • Journal of Statistical Physics
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 130
http://linked.open...iv/tvurceVysledku
  • Šťovíček, Pavel
  • Duclos, P.
  • Lev, O.
http://linked.open...ain/vavai/riv/wos
  • 000251308800008
http://linked.open...n/vavai/riv/zamer
issn
  • 0022-4715
number of pages
http://localhost/t...ganizacniJednotka
  • 21340
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 118 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software