Attributes | Values |
---|
rdf:type
| |
Description
| - Práce představuje Lagrangeovsko-Eulerovský (ALE) výpočetní kód pro simulace problémů z oblasti dynamiky stlačitelných tekutin a fyziky plazmatu zahrnujících tepelnou vodivost a absorpci laserového záření, a to jak v kartézských tak v cylindrických souřadnicích. K adaptaci sítě (rezoning) je využito několika technik jako např. Winslowova vyhlazování, tříkrokové regularizace a metody referenčních Jakobiánů. Konzervativní přenos stavových veličin na novou síť (remapping) je standardně zajištěn pomocí lineární interpolace s dodatečnými opravami. Užitečnost přístupu ALE je demonstrována na simulaci dopadu rychle letícího disku na terč, při níž by čistě lagrangeovská metoda selhala. (cs)
- The aim is to present an Arbitrary Lagrangian-Eulerian (ALE) code for simulation of problems in compressible fluid dynamics and plasma physics including heat conduction and laser absorption, in both Cartesian and cylindrical geometries. Various techniques are utilized for mesh adaptation (rezoning), including Winslow smoothing, three-step untangling and Reference Jacobian method. For conservative transfer (remapping) of variables onto the rezoned mesh, linear interpolation with a posteriori repairs is used by default. Simulation of high velocity impact, for which pure Lagrangian method fails, proves the usefulness of ALE approach.
- The aim is to present an Arbitrary Lagrangian-Eulerian (ALE) code for simulation of problems in compressible fluid dynamics and plasma physics including heat conduction and laser absorption, in both Cartesian and cylindrical geometries. Various techniques are utilized for mesh adaptation (rezoning), including Winslow smoothing, three-step untangling and Reference Jacobian method. For conservative transfer (remapping) of variables onto the rezoned mesh, linear interpolation with a posteriori repairs is used by default. Simulation of high velocity impact, for which pure Lagrangian method fails, proves the usefulness of ALE approach. (en)
|
Title
| - Arbitrary Lagrangian-Eulerian (ALE) Methods in Compressible Fluid Dynamics
- Arbitrary Lagrangian-Eulerian (ALE) Methods in Compressible Fluid Dynamics (en)
- Lagrangeovsko-Eulerovské (ALE) metody v dynamice stlačitelných tekutin (cs)
|
skos:prefLabel
| - Arbitrary Lagrangian-Eulerian (ALE) Methods in Compressible Fluid Dynamics
- Arbitrary Lagrangian-Eulerian (ALE) Methods in Compressible Fluid Dynamics (en)
- Lagrangeovsko-Eulerovské (ALE) metody v dynamice stlačitelných tekutin (cs)
|
skos:notation
| - RIV/68407700:21340/06:04129238!RIV07-GA0-21340___
|
http://linked.open.../vavai/riv/strany
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(GD202/03/H162), Z(MSM6840770022)
|
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/68407700:21340/06:04129238
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - ALE; Fluid Dynamics; Mesh Rezoning; Plasma Physics; Remapping (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...v/mistoKonaniAkce
| |
http://linked.open...i/riv/mistoVydani
| |
http://linked.open...i/riv/nazevZdroje
| - Programs and Algorithms of Numerical Mathematics 13
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...iv/tvurceVysledku
| - Kuchařík, M.
- Váchal, Pavel
- Liska, Richard
- Shashkov, M.
|
http://linked.open...vavai/riv/typAkce
| |
http://linked.open.../riv/zahajeniAkce
| |
http://linked.open...n/vavai/riv/zamer
| |
number of pages
| |
http://purl.org/ne...btex#hasPublisher
| |
https://schema.org/isbn
| |
http://localhost/t...ganizacniJednotka
| |