About: Applying Strategic Multiagent Planning to Real-World Travel Sharing Problems     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Travel sharing, i.e., the problem of finding parts of routes which can be shared by several travellers with different points of departure and destinations, is a complex multiagent problem that requires taking into account individual agents' preferences to come up with mutually acceptable joint plans. In this paper, we apply state-of-the-art planning techniques to real-world public transportation data to evaluate the feasibility of multiagent planning techniques in this domain. The potential of improving travel sharing technology has great application value due to its ability to reduce the environmental impact of travelling while providing benefits to travellers at the same time. We propose a three-phase algorithm that utilises performant single-agent planners to find individual plans in a simplified domain first and then merges them using a best-response planner which ensures resulting solutions are individually rational. Finally, it maps the resulting plan onto the full temporal planning domain to schedule actual journeys. The evaluation of our algorithm on real-world, multi-modal public transportation data for the United Kingdom shows linear scalability both in the scenario size and in the number of agents, where trade-offs have to be made between total cost improvement, the percentage of feasible timetables identified for journeys, and the prolongation of these journeys. Our system constitutes the first implementation of strategic multiagent planning algorithms in large-scale domains and provides insights into the engineering process of translating general domain-independent multiagent planning algorithms to real-world applications.
  • Travel sharing, i.e., the problem of finding parts of routes which can be shared by several travellers with different points of departure and destinations, is a complex multiagent problem that requires taking into account individual agents' preferences to come up with mutually acceptable joint plans. In this paper, we apply state-of-the-art planning techniques to real-world public transportation data to evaluate the feasibility of multiagent planning techniques in this domain. The potential of improving travel sharing technology has great application value due to its ability to reduce the environmental impact of travelling while providing benefits to travellers at the same time. We propose a three-phase algorithm that utilises performant single-agent planners to find individual plans in a simplified domain first and then merges them using a best-response planner which ensures resulting solutions are individually rational. Finally, it maps the resulting plan onto the full temporal planning domain to schedule actual journeys. The evaluation of our algorithm on real-world, multi-modal public transportation data for the United Kingdom shows linear scalability both in the scenario size and in the number of agents, where trade-offs have to be made between total cost improvement, the percentage of feasible timetables identified for journeys, and the prolongation of these journeys. Our system constitutes the first implementation of strategic multiagent planning algorithms in large-scale domains and provides insights into the engineering process of translating general domain-independent multiagent planning algorithms to real-world applications. (en)
Title
  • Applying Strategic Multiagent Planning to Real-World Travel Sharing Problems
  • Applying Strategic Multiagent Planning to Real-World Travel Sharing Problems (en)
skos:prefLabel
  • Applying Strategic Multiagent Planning to Real-World Travel Sharing Problems
  • Applying Strategic Multiagent Planning to Real-World Travel Sharing Problems (en)
skos:notation
  • RIV/68407700:21230/12:00196874!RIV13-MSM-21230___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(LD12044), S
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 123457
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/12:00196874
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • multiagent planning; real-world application; travel sharing (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [8FFB4AA79276]
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Hrnčíř, Jan
  • Rovatsos, M. R.
http://localhost/t...ganizacniJednotka
  • 21230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software