About: Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Using Hermite's formulation of polynomial stability conditions, static output feedback (SOF) controller design can be formulated as a polynomial matrix inequality (PMI), a (generally nonconvex) nonlinear semidefinite programming problem that can be solved (locally) with PENNON, an implementation of a penalty and augmented Lagrangian method. Typically, Hermite SOF PMI problems are badly scaled and experiments reveal that this has a negative impact on the overall performance of the solver. In this note we recall the algebraic interpretation of Hermite's quadratic form as a particular Bezoutian and we use results on polynomial interpolation to express the Hermite PMI in a Lagrange polynomial basis, as an alternative to the conventional power basis. Numerical experi- ments on benchmark problem instances show the substantial improvement brought by the approach, in terms of problem scaling, number of iterations and convergence behavior of PENNON.
  • Using Hermite's formulation of polynomial stability conditions, static output feedback (SOF) controller design can be formulated as a polynomial matrix inequality (PMI), a (generally nonconvex) nonlinear semidefinite programming problem that can be solved (locally) with PENNON, an implementation of a penalty and augmented Lagrangian method. Typically, Hermite SOF PMI problems are badly scaled and experiments reveal that this has a negative impact on the overall performance of the solver. In this note we recall the algebraic interpretation of Hermite's quadratic form as a particular Bezoutian and we use results on polynomial interpolation to express the Hermite PMI in a Lagrange polynomial basis, as an alternative to the conventional power basis. Numerical experi- ments on benchmark problem instances show the substantial improvement brought by the approach, in terms of problem scaling, number of iterations and convergence behavior of PENNON. (en)
Title
  • Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities
  • Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities (en)
skos:prefLabel
  • Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities
  • Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities (en)
skos:notation
  • RIV/68407700:21230/11:00185249!RIV12-GA0-21230___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GAP103/10/0628)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
  • Henrion, Didier
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 201921
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/11:00185249
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Static output feedback; Hermite stability criterion; Polynomial matrix inequality; Nonlinear semidefinite programming (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [C2B5CF38893E]
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Henrion, Didier
  • Delibasi, A.
http://localhost/t...ganizacniJednotka
  • 21230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software