About: Detecting rigid convexity of bivariate polynomials     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Given a polynomial x ∈ Rn -> p(x) in n = 2 variables, a symbolicnumerical algorithm is first described for detecting whether the connected component of the plane sublevel set P = {x : p(x) 0} containing the origin is rigidly convex, or equivalently, whether it has a linear matrix inequality (LMI) representation, or equivalently, if polynomial p(x) is hyperbolic with respect to the origin. The problem boils down to checking whether a univariate polynomial matrix is positive semidefinite, an optimization problem that can be solved with eigenvalue decomposition. When the variety C = {x : p(x) = 0} is an algebraic curve of genus zero, a second algorithm based on Be´ zoutians is proposed to detect whether P has an LMI representation and to build such a representation from a rational parametrization of C. Finally, some extensions to positive genus curves and to the case n > 2 are mentioned.
  • Given a polynomial x ∈ Rn -> p(x) in n = 2 variables, a symbolicnumerical algorithm is first described for detecting whether the connected component of the plane sublevel set P = {x : p(x) 0} containing the origin is rigidly convex, or equivalently, whether it has a linear matrix inequality (LMI) representation, or equivalently, if polynomial p(x) is hyperbolic with respect to the origin. The problem boils down to checking whether a univariate polynomial matrix is positive semidefinite, an optimization problem that can be solved with eigenvalue decomposition. When the variety C = {x : p(x) = 0} is an algebraic curve of genus zero, a second algorithm based on Be´ zoutians is proposed to detect whether P has an LMI representation and to build such a representation from a rational parametrization of C. Finally, some extensions to positive genus curves and to the case n > 2 are mentioned. (en)
Title
  • Detecting rigid convexity of bivariate polynomials
  • Detecting rigid convexity of bivariate polynomials (en)
skos:prefLabel
  • Detecting rigid convexity of bivariate polynomials
  • Detecting rigid convexity of bivariate polynomials (en)
skos:notation
  • RIV/68407700:21230/10:00160536!RIV11-GA0-21230___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA102/08/0186), Z(MSM6840770038)
http://linked.open...iv/cisloPeriodika
  • 5
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 253625
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/10:00160536
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Multivariate polynomials; Convexity; Linear matrix inequality; Real algebraic geometry (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [87104096374E]
http://linked.open...i/riv/nazevZdroje
  • Linear Algebra and Its Applications
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 432
http://linked.open...iv/tvurceVysledku
  • Henrion, Didier
http://linked.open...ain/vavai/riv/wos
  • 000274460300009
http://linked.open...n/vavai/riv/zamer
issn
  • 0024-3795
number of pages
http://localhost/t...ganizacniJednotka
  • 21230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 84 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software