About: Particle Swarm Optimization of Hidden Markov Models: a comparative study     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Článek popisuje optimalizaci markovských modelů pomocí techniky SWO (cs)
  • In recent years, Hidden Markov Models (HMM) have been increasingly applied in data mining applications. However, most authors have used classical optimization Expectation- Maximization (EM) scheme. A new method of HMM learning based on Particle Swarm Optimization (PSO) has been developed. Along with others global approaches as Simulating Annealing (SIM) and Genetic Algorithms (GA) the following local gradient methods have been also compared: classical Expectation-Maximization algorithm, Maximum A Posteriory approach (MAP) and Bayes Variational learning (VAR). The methods are evaluated on a synthetic data set using different evaluation criteria including classification problem. The most reliable optimization approach in terms of performance, numerical stability and speed is VAR learning followed by PSO approach.
  • In recent years, Hidden Markov Models (HMM) have been increasingly applied in data mining applications. However, most authors have used classical optimization Expectation- Maximization (EM) scheme. A new method of HMM learning based on Particle Swarm Optimization (PSO) has been developed. Along with others global approaches as Simulating Annealing (SIM) and Genetic Algorithms (GA) the following local gradient methods have been also compared: classical Expectation-Maximization algorithm, Maximum A Posteriory approach (MAP) and Bayes Variational learning (VAR). The methods are evaluated on a synthetic data set using different evaluation criteria including classification problem. The most reliable optimization approach in terms of performance, numerical stability and speed is VAR learning followed by PSO approach. (en)
Title
  • Particle Swarm Optimization of Hidden Markov Models: a comparative study
  • Particle Swarm Optimization of Hidden Markov Models: a comparative study (en)
  • Optimalizace markovských modelů pomocí SWO (cs)
skos:prefLabel
  • Particle Swarm Optimization of Hidden Markov Models: a comparative study
  • Particle Swarm Optimization of Hidden Markov Models: a comparative study (en)
  • Optimalizace markovských modelů pomocí SWO (cs)
skos:notation
  • RIV/68407700:21230/08:03145659!RIV09-MSM-21230___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • Z(MSM6840770012)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 385979
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/08:03145659
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • hidden markov models; particle swarm optimalization (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [887C7CC3BCA1]
http://linked.open...v/mistoKonaniAkce
  • Athens
http://linked.open...i/riv/mistoVydani
  • Praha
http://linked.open...i/riv/nazevZdroje
  • Distributed Human-Machine Systems
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Novák, Daniel
  • Macaš, Martin
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Česká technika - nakladatelství ČVUT
https://schema.org/isbn
  • 978-80-01-04027-0
http://localhost/t...ganizacniJednotka
  • 21230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software