About: Numerical Simulation of Newtonian and Non - Newtonian Flows in Blood Vessels and Bypass     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • This paper deals with numerical solution of laminar incompressible steady flows of Newtonian and non-Newtonian fluids through vessels of different geometries. The blood flow can be described using the system of Navier-Stokes equations. The diference between Newtonian and non-Newtonian fluids flow is given by two different viscosities (right hand side of Navier-Stokes equations). The continuity equation is completed using the method of artificial compressibility. The space derivatives are discretised using a cell centered finite volume method. Resulting system of ODE (ordinary differential equations) is solved using three stage Runge-Kutta method with given boundary conditions. The blood flow is investigated in the following geometry: branching vessels and a constricted vessel and bypass.
  • This paper deals with numerical solution of laminar incompressible steady flows of Newtonian and non-Newtonian fluids through vessels of different geometries. The blood flow can be described using the system of Navier-Stokes equations. The diference between Newtonian and non-Newtonian fluids flow is given by two different viscosities (right hand side of Navier-Stokes equations). The continuity equation is completed using the method of artificial compressibility. The space derivatives are discretised using a cell centered finite volume method. Resulting system of ODE (ordinary differential equations) is solved using three stage Runge-Kutta method with given boundary conditions. The blood flow is investigated in the following geometry: branching vessels and a constricted vessel and bypass. (en)
  • Tento článek se zabývá numerickým řešením laminárního nestlačitelného stacionárního proudění newtonské a nenewtonské tekutiny žílami různé geometrie. Proudění krve může být popsáno systémem Navierových-Stokesových rovnic. Rozdíl mezi newtonským a nenewtonským prouděním tekutin je dán dvěma různými viskozitami (pravá strana Navierových-Stokesových rovnic). Rovnice kontinuity je doplněna užitím metody umělé stlačitelnosti. Prostorové derivace jsou diskretizovány cell-centered metodou konečných objemů. Výsledný systém obyčejných diferenciálních rovnic je řešen třístupňovou Rungeovou-Kuttovou metodou s danými stacionárními okrajovými podmínkami. Proudění krve je studováno v následujících geometriích: větvené žíly a na přiškrcených žílách a bypasu. (cs)
Title
  • Numerical Simulation of Newtonian and Non - Newtonian Flows in Blood Vessels and Bypass
  • Numerické simulace newtonského a nenewtonského proudění v žílách a bypasu (cs)
  • Numerical Simulation of Newtonian and Non - Newtonian Flows in Blood Vessels and Bypass (en)
skos:prefLabel
  • Numerical Simulation of Newtonian and Non - Newtonian Flows in Blood Vessels and Bypass
  • Numerické simulace newtonského a nenewtonského proudění v žílách a bypasu (cs)
  • Numerical Simulation of Newtonian and Non - Newtonian Flows in Blood Vessels and Bypass (en)
skos:notation
  • RIV/68407700:21220/08:02142299!RIV09-MSM-21220___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(IAA100190804), Z(MSM6840770003)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 383520
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21220/08:02142299
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Navier-Stokes equations; Newtonian and non-Newtonian flows; Runge-Kutta method; finite volume method; incompressible; laminar (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [2F83261E8B33]
http://linked.open...v/mistoKonaniAkce
  • Praha
http://linked.open...i/riv/mistoVydani
  • Praha
http://linked.open...i/riv/nazevZdroje
  • Topical Problems of Fluid Mechanics 2008
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Kozel, Karel
  • Keslerová, Radka
  • Prokop, Vladimír
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Ústav termomechaniky AV ČR
https://schema.org/isbn
  • 978-80-87012-09-3
http://localhost/t...ganizacniJednotka
  • 21220
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 118 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software