About: Problems Connected with the Application of Lamella Flanges in Steel Bridge Construction     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Lamella flanges have lately grown very popular with the designers of steel bridges, because – in their belief - they provide us with the possibility of avoiding very thick flange plates in steel bridge structures. This belief is based on the assumption that the lamellas are perfectly plane and, therefore, in perfect contact everywhere, so that the loading from one lamella is transmitted into the other via pure compression, and that the perfect interaction of both lamellas is materialized by means of boundary fillet welds connecting both of the two lamellas. This simple assumption is, however, far from reality: it is not in the means of steel fabricators, not even in the means of those which are very progressively equipped, to produce perfectly plane flange lamellas. Then both lamellas exhibit unavoidable initial curvatures, which in combination form a gap between the lamellas, and consequently the directly loaded lamella are pressed into this gap. As the loading acting on every bridge is many times repeated, the aforesaid phenomenon is also many times repeated, (we can say that the lamellas „breathe“), and then an unavoidable cumulative damage process in the lamellas comes to being. The authors studied this phenomenon using several methods, the most important among them being probably an experiment conducted on a model simulating the situation connected with the lamella flanges of a real bridge in the neighbourhood of Prague. The results of this investigation will be described in the paper and thereby will demonstrate that the fatigue phenomenon accompanying the “breathing“ of the lamellas can considerably limit the lifetime of the structure.
  • Lamella flanges have lately grown very popular with the designers of steel bridges, because – in their belief - they provide us with the possibility of avoiding very thick flange plates in steel bridge structures. This belief is based on the assumption that the lamellas are perfectly plane and, therefore, in perfect contact everywhere, so that the loading from one lamella is transmitted into the other via pure compression, and that the perfect interaction of both lamellas is materialized by means of boundary fillet welds connecting both of the two lamellas. This simple assumption is, however, far from reality: it is not in the means of steel fabricators, not even in the means of those which are very progressively equipped, to produce perfectly plane flange lamellas. Then both lamellas exhibit unavoidable initial curvatures, which in combination form a gap between the lamellas, and consequently the directly loaded lamella are pressed into this gap. As the loading acting on every bridge is many times repeated, the aforesaid phenomenon is also many times repeated, (we can say that the lamellas „breathe“), and then an unavoidable cumulative damage process in the lamellas comes to being. The authors studied this phenomenon using several methods, the most important among them being probably an experiment conducted on a model simulating the situation connected with the lamella flanges of a real bridge in the neighbourhood of Prague. The results of this investigation will be described in the paper and thereby will demonstrate that the fatigue phenomenon accompanying the “breathing“ of the lamellas can considerably limit the lifetime of the structure. (en)
Title
  • Problems Connected with the Application of Lamella Flanges in Steel Bridge Construction
  • Problems Connected with the Application of Lamella Flanges in Steel Bridge Construction (en)
skos:prefLabel
  • Problems Connected with the Application of Lamella Flanges in Steel Bridge Construction
  • Problems Connected with the Application of Lamella Flanges in Steel Bridge Construction (en)
skos:notation
  • RIV/68407700:21110/14:00225872!RIV15-TA0-21110___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(TA03031099)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 39818
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21110/14:00225872
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • sreathing; cumulative damage; fatigue; lamella flanges; lifetime; steel bridges (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [C38A47C67EDC]
http://linked.open...v/mistoKonaniAkce
  • Bratislava
http://linked.open...i/riv/mistoVydani
  • Bratislava
http://linked.open...i/riv/nazevZdroje
  • Proceedings of the 12th International Conference on New Trends in Statics and Dynamics of Buildings
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Křístek, Vladimír
  • Škaloud, Miroslav
  • Urushadze, S.
  • Kurth, Helmut
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • Slovenská technická univerzita v Bratislave
https://schema.org/isbn
  • 978-80-227-4259-7
http://localhost/t...ganizacniJednotka
  • 21110
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software