About: Estrogenic activity in extracts and exudates of cyanobacteria and green algae     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Here is presented some of the first information on interactions of compounds produced by cyanobacteria and green algae with estrogen receptor signaling. Estrogenic potency of aqueous extracts and exudates (culture spent media with extracellular products) of seven species of cyanobacteria (10 different laboratory strains) and two algal species were assessed by use of in vitro trans-activation assays. Compounds produced by cyanobacteria and algae, and in particular those excreted from the cells, were estrogenic. Most exudates were estrogenic with potencies expressed at 50% of the maximum response under control of the estrogen receptor ranging from 0.2 to 7.2 ng 17 beta-estradiol (E-2) equivalents (EEQ)/L The greatest estrogenic potency was observed for exudates of Microcystis aerigunosa, a common species that forms water blooms. Aqueous extracts of both green algae, but only one species of cyanobacteria (Aphanizomenon gracile) elicited significant estrogenicity with EEQ ranging from 15 to 280 ng 17 beta-estradiol (E-2)/g dry weight. Scenedesmus quadricauda exudates and extracts of Aphanizomenon flos-aquae were antagonistic to the ER when coexposed to E2. The EEQ potency was not correlated with concentrations of cyanotoxins, such as microcystin and cylindrospermopsin, which suggests that the EEQ was comprised of other compounds. The study demonstrates some differences between the estrogenic potency of aqueous extracts prepared from the same species, but of different origin, while the effects of exudates were comparable within species. The observed estrogenic potencies are important namely in relation to the possible mass expansion of cyanobacteria and release of the active compounds into surrounding water.
  • Here is presented some of the first information on interactions of compounds produced by cyanobacteria and green algae with estrogen receptor signaling. Estrogenic potency of aqueous extracts and exudates (culture spent media with extracellular products) of seven species of cyanobacteria (10 different laboratory strains) and two algal species were assessed by use of in vitro trans-activation assays. Compounds produced by cyanobacteria and algae, and in particular those excreted from the cells, were estrogenic. Most exudates were estrogenic with potencies expressed at 50% of the maximum response under control of the estrogen receptor ranging from 0.2 to 7.2 ng 17 beta-estradiol (E-2) equivalents (EEQ)/L The greatest estrogenic potency was observed for exudates of Microcystis aerigunosa, a common species that forms water blooms. Aqueous extracts of both green algae, but only one species of cyanobacteria (Aphanizomenon gracile) elicited significant estrogenicity with EEQ ranging from 15 to 280 ng 17 beta-estradiol (E-2)/g dry weight. Scenedesmus quadricauda exudates and extracts of Aphanizomenon flos-aquae were antagonistic to the ER when coexposed to E2. The EEQ potency was not correlated with concentrations of cyanotoxins, such as microcystin and cylindrospermopsin, which suggests that the EEQ was comprised of other compounds. The study demonstrates some differences between the estrogenic potency of aqueous extracts prepared from the same species, but of different origin, while the effects of exudates were comparable within species. The observed estrogenic potencies are important namely in relation to the possible mass expansion of cyanobacteria and release of the active compounds into surrounding water. (en)
Title
  • Estrogenic activity in extracts and exudates of cyanobacteria and green algae
  • Estrogenic activity in extracts and exudates of cyanobacteria and green algae (en)
skos:prefLabel
  • Estrogenic activity in extracts and exudates of cyanobacteria and green algae
  • Estrogenic activity in extracts and exudates of cyanobacteria and green algae (en)
skos:notation
  • RIV/67985939:_____/12:00436173!RIV15-GA0-67985939
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(2B08036), P(ED0001/01/01), P(GA524/08/0496), S
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 134818
http://linked.open...ai/riv/idVysledku
  • RIV/67985939:_____/12:00436173
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • cyanobacteria; endocrine disruption; estrogenicity; algae; phytoplankton (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [40C5BF8A7E56]
http://linked.open...i/riv/nazevZdroje
  • Environment International
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 39
http://linked.open...iv/tvurceVysledku
  • Bláha, Luděk
  • Nováková, K.
  • Hilscherová, K.
  • Giesy, J. P.
  • Sychrová, E.
  • Štěpánkdová, T.
http://linked.open...ain/vavai/riv/wos
  • 000300129100018
issn
  • 0160-4120
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.envint.2011.10.004
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software