Attributes | Values |
---|
rdf:type
| |
Description
| - We deal with a suitable weak solution $(bold v,p)$ to the Navier-Stokes equations in a domain $Omegasubsetmathbb R^3$. We refine the criterion for the local regularity of this solution at the point $(bold fx_0,t_0)$, which uses the $L^3$-norm of $bold v$ and the $L^{3/2}$-norm of $p$ in a shrinking backward parabolic neighbourhood of $(bold x_0,t_0)$. The refinement consists in the fact that only the values of $bold v$, respectively $p$, in the exterior of a space-time paraboloid with vertex at $(bold x_0,t_0)$, respectively in a %22small%22 subset of this exterior, are considered. The consequence is that a singularity cannot appear at the point $(bold x_0,t_0)$ if $bold v$ and $p$ are %22smooth%22 outside the paraboloid.
- We deal with a suitable weak solution $(bold v,p)$ to the Navier-Stokes equations in a domain $Omegasubsetmathbb R^3$. We refine the criterion for the local regularity of this solution at the point $(bold fx_0,t_0)$, which uses the $L^3$-norm of $bold v$ and the $L^{3/2}$-norm of $p$ in a shrinking backward parabolic neighbourhood of $(bold x_0,t_0)$. The refinement consists in the fact that only the values of $bold v$, respectively $p$, in the exterior of a space-time paraboloid with vertex at $(bold x_0,t_0)$, respectively in a %22small%22 subset of this exterior, are considered. The consequence is that a singularity cannot appear at the point $(bold x_0,t_0)$ if $bold v$ and $p$ are %22smooth%22 outside the paraboloid. (en)
|
Title
| - A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations
- A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations (en)
|
skos:prefLabel
| - A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations
- A geometric improvement of the velocity-pressure local regularity criterion for a suitable weak solution to the Navier-Stokes equations (en)
|
skos:notation
| - RIV/67985840:_____/14:00440826!RIV15-GA0-67985840
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/67985840:_____/14:00440826
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Navier-Stokes equation; suitable weak solution; regularity (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| |
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| |
issn
| |
number of pages
| |