About: Non-Linear Dependence and Teleconnections in Climate Data: Sources, Relevance, Nonstationarity     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Quantification of relations between measured variables of interest by statistical measures of dependence is a common step in analysis of climate data. The choice of dependence measure is key for the results of the subsequent analysis and interpretation. The use of linear Pearson’s correlation coefficient is widespread and convenient. On the other side, as the climate is widely acknowledged to be a nonlinear system, nonlinear dependence quantification methods, such as those based on information-theoretical concepts, are increasingly used for this purpose. In this paper we outline an approach that enables well informed choice of dependence measure for a given type of data, improving the subsequent interpretation of the results. The presented multi-step approach includes statistical testing, quantification of the specific non-linear contribution to the interaction information, localization of areas with strongest nonlinear contribution and assessment of the role of specific temporal patterns, including signal nonstationarities. In detail we study the consequences of the choice of a general nonlinear dependence measure, namely mutual information, focusing on its relevance and potential alterations in the discovered dependence structure. We document the method by applying it to monthly mean temperature data from the NCEP/NCAR reanalysis dataset as well as the ERA dataset. We have been able to identify main sources of observed non-linearity in inter-node couplings. Detailed analysis suggested an important role of several sources of nonstationarity within the climate data. The quantitative role of genuine nonlinear coupling at monthly scale has proven to be almost negligible, providing quantitative support for the use of linear methods for monthly temperature data.
  • Quantification of relations between measured variables of interest by statistical measures of dependence is a common step in analysis of climate data. The choice of dependence measure is key for the results of the subsequent analysis and interpretation. The use of linear Pearson’s correlation coefficient is widespread and convenient. On the other side, as the climate is widely acknowledged to be a nonlinear system, nonlinear dependence quantification methods, such as those based on information-theoretical concepts, are increasingly used for this purpose. In this paper we outline an approach that enables well informed choice of dependence measure for a given type of data, improving the subsequent interpretation of the results. The presented multi-step approach includes statistical testing, quantification of the specific non-linear contribution to the interaction information, localization of areas with strongest nonlinear contribution and assessment of the role of specific temporal patterns, including signal nonstationarities. In detail we study the consequences of the choice of a general nonlinear dependence measure, namely mutual information, focusing on its relevance and potential alterations in the discovered dependence structure. We document the method by applying it to monthly mean temperature data from the NCEP/NCAR reanalysis dataset as well as the ERA dataset. We have been able to identify main sources of observed non-linearity in inter-node couplings. Detailed analysis suggested an important role of several sources of nonstationarity within the climate data. The quantitative role of genuine nonlinear coupling at monthly scale has proven to be almost negligible, providing quantitative support for the use of linear methods for monthly temperature data. (en)
Title
  • Non-Linear Dependence and Teleconnections in Climate Data: Sources, Relevance, Nonstationarity
  • Non-Linear Dependence and Teleconnections in Climate Data: Sources, Relevance, Nonstationarity (en)
skos:prefLabel
  • Non-Linear Dependence and Teleconnections in Climate Data: Sources, Relevance, Nonstationarity
  • Non-Linear Dependence and Teleconnections in Climate Data: Sources, Relevance, Nonstationarity (en)
skos:notation
  • RIV/67985807:_____/14:00393071!RIV15-GA0-67985807
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GCP103/11/J068)
http://linked.open...iv/cisloPeriodika
  • 7-8
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 32784
http://linked.open...ai/riv/idVysledku
  • RIV/67985807:_____/14:00393071
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • climate networks; nonlinearity; mutual information; teleconnections; seasonality in variance; nonstationarity (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [C5DA72F24D39]
http://linked.open...i/riv/nazevZdroje
  • Climate Dynamics
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 42
http://linked.open...iv/tvurceVysledku
  • Hartman, David
  • Hlinka, Jaroslav
  • Paluš, Milan
  • Vejmelka, Martin
  • Novotná, Dagmar
http://linked.open...ain/vavai/riv/wos
  • 000334068100011
issn
  • 0930-7575
number of pages
http://bibframe.org/vocab/doi
  • 10.1007/s00382-013-1780-2
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software