About: Estimates of Model Complexity in Neural-Network Learning     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Model complexity in neural-network learning is investigated using tools from nonlinear approximation and integration theory. Estimates of network complexity are obtained from inspection of upper bounds on convergence of minima of error functionals over networks with an increasing number of units to their global minima. The estimates are derived using integral transforms induced by computational units. The role of dimensionality of training data defining error functionals is discussed.
  • Model complexity in neural-network learning is investigated using tools from nonlinear approximation and integration theory. Estimates of network complexity are obtained from inspection of upper bounds on convergence of minima of error functionals over networks with an increasing number of units to their global minima. The estimates are derived using integral transforms induced by computational units. The role of dimensionality of training data defining error functionals is discussed. (en)
Title
  • Estimates of Model Complexity in Neural-Network Learning
  • Estimates of Model Complexity in Neural-Network Learning (en)
skos:prefLabel
  • Estimates of Model Complexity in Neural-Network Learning
  • Estimates of Model Complexity in Neural-Network Learning (en)
skos:notation
  • RIV/67985807:_____/09:00328492!RIV10-MSM-67985807
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1M0567), Z(AV0Z10300504)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 313564
http://linked.open...ai/riv/idVysledku
  • RIV/67985807:_____/09:00328492
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • model complexity; neural networks; learning from data (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [7947E960A181]
http://linked.open...i/riv/mistoVydani
  • Berlin
http://linked.open...vEdiceCisloSvazku
  • Studies in Computational Intelligence, 247
http://linked.open...i/riv/nazevZdroje
  • Innovations in Neural Information Paradigms and Applications
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...v/pocetStranKnihy
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Kůrková, Věra
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Springer-Verlag
https://schema.org/isbn
  • 978-3-642-04002-3
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software